論文の概要: Generating Dispatching Rules for the Interrupting Swap-Allowed Blocking
Job Shop Problem Using Graph Neural Network and Reinforcement Learning
- arxiv url: http://arxiv.org/abs/2302.02506v2
- Date: Thu, 28 Sep 2023 21:21:48 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-02 19:28:18.140446
- Title: Generating Dispatching Rules for the Interrupting Swap-Allowed Blocking
Job Shop Problem Using Graph Neural Network and Reinforcement Learning
- Title(参考訳): グラフニューラルネットワークと強化学習を用いた断続スワップ追従型ブロッキングジョブショップ問題の分散ルールの生成
- Authors: Vivian W.H. Wong, Sang Hun Kim, Junyoung Park, Jinkyoo Park, Kincho H.
Law
- Abstract要約: 割り込みスワップ可能なブロッキングジョブショップ問題(ISBJSSP)は、多くの製造計画やロジスティクスアプリケーションを現実的にモデル化することができる。
連続的な削除や加算を受けるノードとエッジを特徴とする動的解離グラフの定式化を導入する。
ISBJSSP設定の割り込み、スワップ、ブロッキングをシミュレートするシミュレータが開発された。
- 参考スコア(独自算出の注目度): 21.021840570685264
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The interrupting swap-allowed blocking job shop problem (ISBJSSP) is a
complex scheduling problem that is able to model many manufacturing planning
and logistics applications realistically by addressing both the lack of storage
capacity and unforeseen production interruptions. Subjected to random
disruptions due to machine malfunction or maintenance, industry production
settings often choose to adopt dispatching rules to enable adaptive, real-time
re-scheduling, rather than traditional methods that require costly
re-computation on the new configuration every time the problem condition
changes dynamically. To generate dispatching rules for the ISBJSSP problem, we
introduce a dynamic disjunctive graph formulation characterized by nodes and
edges subjected to continuous deletions and additions. This formulation enables
the training of an adaptive scheduler utilizing graph neural networks and
reinforcement learning. Furthermore, a simulator is developed to simulate
interruption, swapping, and blocking in the ISBJSSP setting. Employing a set of
reported benchmark instances, we conduct a detailed experimental study on
ISBJSSP instances with a range of machine shutdown probabilities to show that
the scheduling policies generated can outperform or are at least as competitive
as existing dispatching rules with predetermined priority. This study shows
that the ISBJSSP, which requires real-time adaptive solutions, can be scheduled
efficiently with the proposed method when production interruptions occur with
random machine shutdowns.
- Abstract(参考訳): 中断型スワップ可能ブロッキングジョブショップ問題(isbjssp)は、多くの製造計画やロジスティクスアプリケーションを、ストレージ容量の欠如と予期せぬ生産中断の両方に対処してリアルにモデル化できる複雑なスケジューリング問題である。
機械の故障やメンテナンスによる乱雑な破壊を受け、産業生産設定では、問題状態が動的に変化するたびに新しい構成にコストがかかる従来の方法よりも、適応的でリアルタイムな再スケジューリングを可能にするディスパッチルールを採用することを選択することが多い。
ISBJSSP問題に対するディスパッチルールを生成するために,連続的な削除や加算を受けるノードとエッジを特徴とする動的解離グラフ定式化を導入する。
この定式化により、グラフニューラルネットワークと強化学習を利用した適応スケジューラのトレーニングが可能になる。
さらに、ISBJSSP設定における割り込み、スワップ、ブロッキングをシミュレートするシミュレータを開発した。
本報告では,isbjsspインスタンスについて,マシンシャットダウン確率範囲の詳細な実験を行い,生成したスケジューリングポリシーが既定のディスパッチルールよりも優れているか,あるいは少なくとも既定の優先度で競合可能であることを示す。
本研究は,実時間適応型ソリューションを必要とするISBJSSPを,ランダムマシン停止時に生産中断が発生した場合に,提案手法で効率的にスケジュールできることを示した。
関連論文リスト
- Automated Conversion of Static to Dynamic Scheduler via Natural Language [3.4748713192043876]
我々は、動的スケジューリング(RAGDyS)の制約を実装するプロセスを自動化するために、検索型拡張生成(RAG)ベースのLLMモデルを提案する。
本フレームワークは,エンドユーザーを対象とした数学的モデリングと計算負荷に関する技術的複雑さの最小化を目的としている。
論文 参考訳(メタデータ) (2024-05-08T04:07:38Z) - Intent-Aware DRL-Based Uplink Dynamic Scheduler for 5G-NR [30.146175299047325]
産業用インターネット・オブ・モノのユーザ機器(IIoT UE)を意図的(QoS要求品質)とランダムなトラフィック到着で支援する問題について検討する。
利用可能な通信資源のスケジューリング方法を学ぶために,DRLに基づく時間周波数リソースの集中型動的スケジューラを提案する。
論文 参考訳(メタデータ) (2024-03-27T08:57:15Z) - Constant-time Motion Planning with Anytime Refinement for Manipulation [17.543746580669662]
本研究では,CTMP(Constant-time Motion Planners)アルゴリズムと組み合わせたリアルタイム改良手法を提案する。
提案するフレームワークは,定数時間アルゴリズムとして動作するため,ユーザ定義時間しきい値内の初期解を高速に生成する。
任意の時間アルゴリズムとして機能し、割り当てられた時間予算内で、ソリューションの品質を反復的に改善します。
論文 参考訳(メタデータ) (2023-11-01T20:40:10Z) - Edge Generation Scheduling for DAG Tasks Using Deep Reinforcement
Learning [2.365237699556817]
直接非巡回グラフ(DAG)タスクは現在、複雑なアプリケーションをモデル化するためにリアルタイムドメインで採用されている。
エッジを反復的に生成することでDAG幅を最小化する新しいDAGスケジューリングフレームワークを提案する。
我々は,提案アルゴリズムの有効性を,最先端DAGスケジューリングと最適混合整数線形プログラミングベースラインとの比較により評価した。
論文 参考訳(メタデータ) (2023-08-28T15:19:18Z) - Dynamic Scheduling for Federated Edge Learning with Streaming Data [56.91063444859008]
我々は,長期的エネルギー制約のある分散エッジデバイスにおいて,トレーニングデータを時間とともにランダムに生成するフェデレーションエッジ学習(FEEL)システムを検討する。
限られた通信リソースとレイテンシ要件のため、各イテレーションでローカルトレーニングプロセスに参加するのはデバイスのサブセットのみである。
論文 参考訳(メタデータ) (2023-05-02T07:41:16Z) - Guaranteed Dynamic Scheduling of Ultra-Reliable Low-Latency Traffic via
Conformal Prediction [72.59079526765487]
アップリンクにおける超信頼性・低遅延トラフィック(URLLC)の動的スケジューリングは、既存のサービスの効率を大幅に向上させることができる。
主な課題は、URLLCパケット生成のプロセスにおける不確実性である。
本稿では,URLLC トラフィック予測器の品質に関わらず,信頼性と遅延を保証した新しい URLLC パケットスケジューラを提案する。
論文 参考訳(メタデータ) (2023-02-15T14:09:55Z) - Scheduling Inference Workloads on Distributed Edge Clusters with
Reinforcement Learning [11.007816552466952]
本稿では,エッジネットワークにおける予測クエリを短時間でスケジューリングする問題に焦点をあてる。
シミュレーションにより,大規模ISPの現実的なネットワーク設定とワークロードにおけるいくつかのポリシーを解析する。
我々は、強化学習に基づくスケジューリングアルゴリズムASETを設計し、システム条件に応じてその決定を適応させることができる。
論文 参考訳(メタデータ) (2023-01-31T13:23:34Z) - Learning Robust Policy against Disturbance in Transition Dynamics via
State-Conservative Policy Optimization [63.75188254377202]
深層強化学習アルゴリズムは、ソースとターゲット環境の相違により、現実世界のタスクでは不十分な処理を行うことができる。
本研究では,前もって乱れをモデル化せずにロバストなポリシーを学習するための,モデルフリーなアクター批判アルゴリズムを提案する。
いくつかのロボット制御タスクの実験では、SCPOは遷移力学の乱れに対する堅牢なポリシーを学習している。
論文 参考訳(メタデータ) (2021-12-20T13:13:05Z) - Better than the Best: Gradient-based Improper Reinforcement Learning for
Network Scheduling [60.48359567964899]
パケット遅延を最小限に抑えるため,制約付き待ち行列ネットワークにおけるスケジューリングの問題を考える。
我々は、利用可能な原子ポリシーよりも優れたスケジューラを生成するポリシー勾配に基づく強化学習アルゴリズムを使用する。
論文 参考訳(メタデータ) (2021-05-01T10:18:34Z) - Adaptive Subcarrier, Parameter, and Power Allocation for Partitioned
Edge Learning Over Broadband Channels [69.18343801164741]
パーティショニングエッジ学習(PARTEL)は、無線ネットワークにおいてよく知られた分散学習手法であるパラメータサーバトレーニングを実装している。
本稿では、いくつかの補助変数を導入してParticleELを用いてトレーニングできるディープニューラルネットワーク(DNN)モデルについて考察する。
論文 参考訳(メタデータ) (2020-10-08T15:27:50Z) - Combining Deep Learning and Optimization for Security-Constrained
Optimal Power Flow [94.24763814458686]
セキュリティに制約のある最適電力フロー(SCOPF)は、電力システムの基本である。
SCOPF問題におけるAPRのモデル化は、複雑な大規模混合整数プログラムをもたらす。
本稿では,ディープラーニングとロバスト最適化を組み合わせた新しい手法を提案する。
論文 参考訳(メタデータ) (2020-07-14T12:38:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。