Domain Re-Modulation for Few-Shot Generative Domain Adaptation
- URL: http://arxiv.org/abs/2302.02550v4
- Date: Wed, 18 Oct 2023 08:48:47 GMT
- Title: Domain Re-Modulation for Few-Shot Generative Domain Adaptation
- Authors: Yi Wu, Ziqiang Li, Chaoyue Wang, Heliang Zheng, Shanshan Zhao, Bin Li,
Dacheng Tao
- Abstract summary: Generative Domain Adaptation (GDA) involves transferring a pre-trained generator from one domain to a new domain using only a few reference images.
Inspired by the way human brains acquire knowledge in new domains, we present an innovative generator structure called Domain Re-Modulation (DoRM)
DoRM not only meets the criteria of high quality, large synthesis diversity, and cross-domain consistency, but also incorporates memory and domain association.
- Score: 71.47730150327818
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this study, we delve into the task of few-shot Generative Domain
Adaptation (GDA), which involves transferring a pre-trained generator from one
domain to a new domain using only a few reference images. Inspired by the way
human brains acquire knowledge in new domains, we present an innovative
generator structure called Domain Re-Modulation (DoRM). DoRM not only meets the
criteria of high quality, large synthesis diversity, and cross-domain
consistency, which were achieved by previous research in GDA, but also
incorporates memory and domain association, akin to how human brains operate.
Specifically, DoRM freezes the source generator and introduces new mapping and
affine modules (M&A modules) to capture the attributes of the target domain
during GDA. This process resembles the formation of new synapses in human
brains. Consequently, a linearly combinable domain shift occurs in the style
space. By incorporating multiple new M&A modules, the generator gains the
capability to perform high-fidelity multi-domain and hybrid-domain generation.
Moreover, to maintain cross-domain consistency more effectively, we introduce a
similarity-based structure loss. This loss aligns the auto-correlation map of
the target image with its corresponding auto-correlation map of the source
image during training. Through extensive experiments, we demonstrate the
superior performance of our DoRM and similarity-based structure loss in
few-shot GDA, both quantitatively and qualitatively. The code will be available
at https://github.com/wuyi2020/DoRM.
Related papers
- UniHDA: A Unified and Versatile Framework for Multi-Modal Hybrid Domain Adaptation [22.003900281544766]
We propose UniHDA, a framework for generative hybrid domain adaptation with multi-modal references from multiple domains.
Our framework is generator-agnostic and versatile to multiple generators, e.g., StyleGAN, EG3D, and Diffusion Models.
arXiv Detail & Related papers (2024-01-23T09:49:24Z) - Few-shot Hybrid Domain Adaptation of Image Generators [14.779903669510846]
Few-shot Hybrid Domain Adaptation aims to acquire an adapted generator that preserves the integrated attributes of all target domains.
We introduce a discriminator-free framework that directly encodes different domains' images into well-separable subspaces.
Experiments show that our method can obtain numerous domain-specific attributes in a single adapted generator.
arXiv Detail & Related papers (2023-10-30T09:35:43Z) - Adversarial Bi-Regressor Network for Domain Adaptive Regression [52.5168835502987]
It is essential to learn a cross-domain regressor to mitigate the domain shift.
This paper proposes a novel method Adversarial Bi-Regressor Network (ABRNet) to seek more effective cross-domain regression model.
arXiv Detail & Related papers (2022-09-20T18:38:28Z) - Towards Diverse and Faithful One-shot Adaption of Generative Adversarial
Networks [54.80435295622583]
One-shot generative domain adaption aims to transfer a pre-trained generator on one domain to a new domain using one reference image only.
We present a novel one-shot generative domain adaption method, i.e., DiFa, for diverse generation and faithful adaptation.
arXiv Detail & Related papers (2022-07-18T16:29:41Z) - Domain Invariant Masked Autoencoders for Self-supervised Learning from
Multi-domains [73.54897096088149]
We propose a Domain-invariant Masked AutoEncoder (DiMAE) for self-supervised learning from multi-domains.
The core idea is to augment the input image with style noise from different domains and then reconstruct the image from the embedding of the augmented image.
Experiments on PACS and DomainNet illustrate that DiMAE achieves considerable gains compared with recent state-of-the-art methods.
arXiv Detail & Related papers (2022-05-10T09:49:40Z) - Unsupervised Domain Adaptation with Semantic Consistency across
Heterogeneous Modalities for MRI Prostate Lesion Segmentation [19.126306953075275]
We introduce two new loss functions that promote semantic consistency.
In particular, we address the challenge of enhancing performance on VERDICT-MRI, an advanced diffusion-weighted imaging technique.
arXiv Detail & Related papers (2021-09-19T17:33:26Z) - Dynamic Transfer for Multi-Source Domain Adaptation [82.54405157719641]
We present dynamic transfer to address domain conflicts, where the model parameters are adapted to samples.
It breaks down source domain barriers and turns multi-source domains into a single-source domain.
Experimental results show that, without using domain labels, our dynamic transfer outperforms the state-of-the-art method by more than 3%.
arXiv Detail & Related papers (2021-03-19T01:22:12Z) - Adapt Everywhere: Unsupervised Adaptation of Point-Clouds and Entropy
Minimisation for Multi-modal Cardiac Image Segmentation [10.417009344120917]
We present a novel UDA method for multi-modal cardiac image segmentation.
The proposed method is based on adversarial learning and adapts network features between source and target domain in different spaces.
We validated our method on two cardiac datasets by adapting from the annotated source domain to the unannotated target domain.
arXiv Detail & Related papers (2021-03-15T08:59:44Z) - MADAN: Multi-source Adversarial Domain Aggregation Network for Domain
Adaptation [58.38749495295393]
Domain adaptation aims to learn a transferable model to bridge the domain shift between one labeled source domain and another sparsely labeled or unlabeled target domain.
Recent multi-source domain adaptation (MDA) methods do not consider the pixel-level alignment between sources and target.
We propose a novel MDA framework to address these challenges.
arXiv Detail & Related papers (2020-02-19T21:22:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.