論文の概要: Proposing Novel Extrapolative Compounds by Nested Variational
Autoencoders
- arxiv url: http://arxiv.org/abs/2302.02555v1
- Date: Mon, 6 Feb 2023 04:12:12 GMT
- ステータス: 処理完了
- システム内更新日: 2023-02-07 17:41:21.740240
- Title: Proposing Novel Extrapolative Compounds by Nested Variational
Autoencoders
- Title(参考訳): nested variational autoencoder による新規外挿化合物の提案
- Authors: Yoshihiro Osakabe and Akinori Asahara
- Abstract要約: 著者らは2つの変分オートエンコーダ(VAE)をネストした深部生成モデルを提案した。
外部VAEは大規模公開データを用いて化合物の構造的特徴を学習し,内部VAEは小規模実験データから外部VAEの潜伏変数と特性との関係を学習する。
その結果, この損失関数は, 高性能な候補を生成する確率の向上に寄与することが示唆された。
- 参考スコア(独自算出の注目度): 0.685316573653194
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Materials informatics (MI), which uses artificial intelligence and data
analysis techniques to improve the efficiency of materials development, is
attracting increasing interest from industry. One of its main applications is
the rapid development of new high-performance compounds. Recently, several deep
generative models have been proposed to suggest candidate compounds that are
expected to satisfy the desired performance. However, they usually have the
problem of requiring a large amount of experimental datasets for training to
achieve sufficient accuracy. In actual cases, it is often possible to
accumulate only about 1000 experimental data at most. Therefore, the authors
proposed a deep generative model with nested two variational autoencoders
(VAEs). The outer VAE learns the structural features of compounds using
large-scale public data, while the inner VAE learns the relationship between
the latent variables of the outer VAE and the properties from small-scale
experimental data. To generate high performance compounds beyond the range of
the training data, the authors also proposed a loss function that amplifies the
correlation between a component of latent variables of the inner VAE and
material properties. The results indicated that this loss function contributes
to improve the probability of generating high-performance candidates.
Furthermore, as a result of verification test with an actual customer in
chemical industry, it was confirmed that the proposed method is effective in
reducing the number of experiments to $1/4$ compared to a conventional method.
- Abstract(参考訳): 材料情報学(MI)は、人工知能とデータ分析技術を用いて、材料開発効率を向上し、産業からの関心を高めている。
主な用途の1つは、新しい高性能化合物の急速な開発である。
近年,期待する性能を満足する候補化合物を示唆する深層生成モデルがいくつか提案されている。
しかし、これらは通常、十分な精度を達成するために大量の実験データセットを必要とする。
実際には、せいぜい1000以上の実験データしか蓄積できないことが多い。
そこで著者らは,nested two variational autoencoder (vaes) を用いた深層生成モデルを提案した。
外部VAEは大規模公開データを用いて化合物の構造的特徴を学習し,内部VAEは小規模実験データから外部VAEの潜伏変数と特性との関係を学習する。
また, 学習データの範囲を超えて高性能な化合物を生成するために, 内部vaeの潜在変数成分と材料特性との相関を増幅する損失関数を提案した。
その結果, この損失関数は, 高性能候補生成確率の向上に寄与することが示唆された。
また, 化学工業における実顧客との検証試験の結果, 提案手法が従来の手法と比較して実験数を1/4$に削減する効果があることが確認された。
関連論文リスト
- DetDiffusion: Synergizing Generative and Perceptive Models for Enhanced Data Generation and Perception [78.26734070960886]
現在の知覚モデルは、リソース集約的なデータセットに大きく依存している。
セグメンテーションを通じて知覚認識損失(P.A.損失)を導入し、品質と制御性の両方を改善した。
本手法は,世代間における知覚認識属性(P.A. Attr)の抽出と利用により,データ拡張をカスタマイズする。
論文 参考訳(メタデータ) (2024-03-20T04:58:03Z) - LESS: Selecting Influential Data for Targeted Instruction Tuning [64.78894228923619]
本稿では,データの影響を推定し,命令データ選択のための低ランクグレーディエント類似度探索を行うアルゴリズムであるLESSを提案する。
LESS選択したデータの5%のトレーニングは、さまざまなダウンストリームタスクにわたる完全なデータセットでのトレーニングよりも優れています。
我々の方法は、意図した下流アプリケーションに必要な推論スキルを識別するために、表面的なフォームキューを超えています。
論文 参考訳(メタデータ) (2024-02-06T19:18:04Z) - Retrosynthesis prediction enhanced by in-silico reaction data
augmentation [66.5643280109899]
RetroWISEは,実データから推定されるベースモデルを用いて,シリコン内反応の生成と増大を行うフレームワークである。
3つのベンチマークデータセットで、RetroWISEは最先端モデルに対して最高の全体的なパフォーマンスを達成する。
論文 参考訳(メタデータ) (2024-01-31T07:40:37Z) - Objective-Agnostic Enhancement of Molecule Properties via Multi-Stage
VAE [1.3597551064547502]
変異オートエンコーダ(VAE)は医薬品発見の一般的な方法であり、その性能を改善するために様々なアーキテクチャやパイプラインが提案されている。
VAEアプローチは、データが高次元の周囲空間に埋め込まれた低次元多様体上にあるとき、多様体の回復不良に悩まされることが知られている。
本稿では, 合成データセット上での多様体回復を向上する多段階VAEアプローチを創薬分野に適用することを検討する。
論文 参考訳(メタデータ) (2023-08-24T20:22:22Z) - ALMERIA: Boosting pairwise molecular contrasts with scalable methods [0.0]
ALMERIAは、一対の分子コントラストに基づく化合物の類似性と活性予測を推定するためのツールである。
大量のデータを利用するスケーラブルなソフトウェアと手法を使って実装されている。
分子活性予測の最先端性能を示す実験を行った。
論文 参考訳(メタデータ) (2023-04-28T16:27:06Z) - Boosting Differentiable Causal Discovery via Adaptive Sample Reweighting [62.23057729112182]
異なるスコアに基づく因果探索法は観測データから有向非巡回グラフを学習する。
本稿では,Reweighted Score関数ReScoreの適応重みを動的に学習することにより因果発見性能を向上させるためのモデルに依存しないフレームワークを提案する。
論文 参考訳(メタデータ) (2023-03-06T14:49:59Z) - MetaRF: Differentiable Random Forest for Reaction Yield Prediction with
a Few Trails [58.47364143304643]
本稿では,反応収率予測問題に焦点をあてる。
筆者らはまず,数発の収量予測のために特別に設計された,注意に基づく識別可能なランダム森林モデルであるMetaRFを紹介した。
数発の学習性能を改善するために,さらに次元還元に基づくサンプリング手法を導入する。
論文 参考訳(メタデータ) (2022-08-22T06:40:13Z) - Physics-enhanced deep surrogates for partial differential equations [30.731686639510517]
本稿では, 複雑な物理系のための高速サロゲートモデル開発に向けて, 物理強化ディープサロゲート(PEDS)アプローチを提案する。
具体的には,低忠実で説明可能な物理シミュレータとニューラルネットワークジェネレータの組み合わせを提案する。
論文 参考訳(メタデータ) (2021-11-10T18:43:18Z) - Audacity of huge: overcoming challenges of data scarcity and data
quality for machine learning in computational materials discovery [1.0036312061637764]
機械学習(ML)に加速された発見は、予測構造とプロパティの関係を明らかにするために大量の高忠実度データを必要とする。
材料発見に関心を持つ多くの特性において、データ生成の挑戦的な性質と高いコストは、人口が少なく、疑わしい品質を持つデータランドスケープを生み出している。
手作業によるキュレーションがなければ、より洗練された自然言語処理と自動画像解析により、文献から構造-プロパティ関係を学習できるようになる。
論文 参考訳(メタデータ) (2021-11-02T21:43:58Z) - Bootstrapping Your Own Positive Sample: Contrastive Learning With
Electronic Health Record Data [62.29031007761901]
本稿では,新しいコントラスト型正規化臨床分類モデルを提案する。
EHRデータに特化した2つのユニークなポジティブサンプリング戦略を紹介します。
私たちのフレームワークは、現実世界のCOVID-19 EHRデータの死亡リスクを予測するために、競争の激しい実験結果をもたらします。
論文 参考訳(メタデータ) (2021-04-07T06:02:04Z) - Longitudinal Variational Autoencoder [1.4680035572775534]
不足値を含む高次元データを解析するための一般的なアプローチは、変分オートエンコーダ(VAE)を用いた低次元表現を学習することである。
標準的なVAEは、学習した表現はi.d.であり、データサンプル間の相関を捉えることができないと仮定する。
本稿では,多出力加法的ガウス過程(GP)を用いて,構造化された低次元表現を学習するVAEの能力を拡張した縦型VAE(L-VAE)を提案する。
我々の手法は時間変化の共有効果とランダム効果の両方に同時に対応でき、構造化された低次元表現を生成する。
論文 参考訳(メタデータ) (2020-06-17T10:30:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。