INCREASE: Inductive Graph Representation Learning for Spatio-Temporal
Kriging
- URL: http://arxiv.org/abs/2302.02738v1
- Date: Mon, 6 Feb 2023 12:28:35 GMT
- Title: INCREASE: Inductive Graph Representation Learning for Spatio-Temporal
Kriging
- Authors: Chuanpan Zheng, Xiaoliang Fan, Cheng Wang, Jianzhong Qi, Chaochao
Chen, Longbiao Chen
- Abstract summary: SRU-temporal kriging is an important problem in web and social applications, such as Web or Internet of Things, where things (e.g., sensors) connected into a web often come with spatial and temporal properties.
We propose a novel inductive graph representation learning model for kriging.
- Score: 35.193756288996944
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Spatio-temporal kriging is an important problem in web and social
applications, such as Web or Internet of Things, where things (e.g., sensors)
connected into a web often come with spatial and temporal properties. It aims
to infer knowledge for (the things at) unobserved locations using the data from
(the things at) observed locations during a given time period of interest. This
problem essentially requires \emph{inductive learning}. Once trained, the model
should be able to perform kriging for different locations including newly given
ones, without retraining. However, it is challenging to perform accurate
kriging results because of the heterogeneous spatial relations and diverse
temporal patterns. In this paper, we propose a novel inductive graph
representation learning model for spatio-temporal kriging. We first encode
heterogeneous spatial relations between the unobserved and observed locations
by their spatial proximity, functional similarity, and transition probability.
Based on each relation, we accurately aggregate the information of most
correlated observed locations to produce inductive representations for the
unobserved locations, by jointly modeling their similarities and differences.
Then, we design relation-aware gated recurrent unit (GRU) networks to
adaptively capture the temporal correlations in the generated sequence
representations for each relation. Finally, we propose a multi-relation
attention mechanism to dynamically fuse the complex spatio-temporal information
at different time steps from multiple relations to compute the kriging output.
Experimental results on three real-world datasets show that our proposed model
outperforms state-of-the-art methods consistently, and the advantage is more
significant when there are fewer observed locations. Our code is available at
https://github.com/zhengchuanpan/INCREASE.
Related papers
- Kriformer: A Novel Spatiotemporal Kriging Approach Based on Graph Transformers [5.4381914710364665]
This study addresses posed by sparse sensor deployment and unreliable data by framing the problem as an environmental challenge.
A graphkriformer model, Kriformer, estimates data at locations without sensors by mining spatial and temporal correlations, even with limited resources.
arXiv Detail & Related papers (2024-09-23T11:01:18Z) - Temporal Smoothness Regularisers for Neural Link Predictors [8.975480841443272]
We show that a simple method like TNTComplEx can produce significantly more accurate results than state-of-the-art methods.
We also evaluate the impact of a wide range of temporal smoothing regularisers on two state-of-the-art temporal link prediction models.
arXiv Detail & Related papers (2023-09-16T16:52:49Z) - Correlation-aware Spatial-Temporal Graph Learning for Multivariate
Time-series Anomaly Detection [67.60791405198063]
We propose a correlation-aware spatial-temporal graph learning (termed CST-GL) for time series anomaly detection.
CST-GL explicitly captures the pairwise correlations via a multivariate time series correlation learning module.
A novel anomaly scoring component is further integrated into CST-GL to estimate the degree of an anomaly in a purely unsupervised manner.
arXiv Detail & Related papers (2023-07-17T11:04:27Z) - Multi-Temporal Relationship Inference in Urban Areas [75.86026742632528]
Finding temporal relationships among locations can benefit a bunch of urban applications, such as dynamic offline advertising and smart public transport planning.
We propose a solution to Trial with a graph learning scheme, which includes a spatially evolving graph neural network (SEENet)
SEConv performs the intra-time aggregation and inter-time propagation to capture the multifaceted spatially evolving contexts from the view of location message passing.
SE-SSL designs time-aware self-supervised learning tasks in a global-local manner with additional evolving constraint to enhance the location representation learning and further handle the relationship sparsity.
arXiv Detail & Related papers (2023-06-15T07:48:32Z) - From Temporal to Contemporaneous Iterative Causal Discovery in the
Presence of Latent Confounders [6.365889364810238]
We present a constraint-based algorithm for learning causal structures from observational time-series data.
We assume a discrete-time, stationary structural vector autoregressive process, with both temporal and contemporaneous causal relations.
The presented algorithm gradually refines a causal graph by learning long-term temporal relations before short-term ones, where contemporaneous relations are learned last.
arXiv Detail & Related papers (2023-06-01T12:46:06Z) - Learning to Reconstruct Missing Data from Spatiotemporal Graphs with
Sparse Observations [11.486068333583216]
This paper tackles the problem of learning effective models to reconstruct missing data points.
We propose a class of attention-based architectures, that given a set of highly sparse observations, learn a representation for points in time and space.
Compared to the state of the art, our model handles sparse data without propagating prediction errors or requiring a bidirectional model to encode forward and backward time dependencies.
arXiv Detail & Related papers (2022-05-26T16:40:48Z) - Dynamic Relation Discovery and Utilization in Multi-Entity Time Series
Forecasting [92.32415130188046]
In many real-world scenarios, there could exist crucial yet implicit relation between entities.
We propose an attentional multi-graph neural network with automatic graph learning (A2GNN) in this work.
arXiv Detail & Related papers (2022-02-18T11:37:04Z) - Spatio-Temporal Joint Graph Convolutional Networks for Traffic
Forecasting [75.10017445699532]
Recent have shifted their focus towards formulating traffic forecasting as atemporal graph modeling problem.
We propose a novel approach for accurate traffic forecasting on road networks over multiple future time steps.
arXiv Detail & Related papers (2021-11-25T08:45:14Z) - Pay Attention to Evolution: Time Series Forecasting with Deep
Graph-Evolution Learning [33.79957892029931]
This work presents a novel neural network architecture for time-series forecasting.
We named our method Recurrent Graph Evolution Neural Network (ReGENN)
An extensive set of experiments was conducted comparing ReGENN with dozens of ensemble methods and classical statistical ones.
arXiv Detail & Related papers (2020-08-28T20:10:07Z) - Connecting the Dots: Multivariate Time Series Forecasting with Graph
Neural Networks [91.65637773358347]
We propose a general graph neural network framework designed specifically for multivariate time series data.
Our approach automatically extracts the uni-directed relations among variables through a graph learning module.
Our proposed model outperforms the state-of-the-art baseline methods on 3 of 4 benchmark datasets.
arXiv Detail & Related papers (2020-05-24T04:02:18Z) - A Spatial-Temporal Attentive Network with Spatial Continuity for
Trajectory Prediction [74.00750936752418]
We propose a novel model named spatial-temporal attentive network with spatial continuity (STAN-SC)
First, spatial-temporal attention mechanism is presented to explore the most useful and important information.
Second, we conduct a joint feature sequence based on the sequence and instant state information to make the generative trajectories keep spatial continuity.
arXiv Detail & Related papers (2020-03-13T04:35:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.