Multivariate Long-term Time Series Forecasting with Fourier Neural Filter
- URL: http://arxiv.org/abs/2506.09174v1
- Date: Tue, 10 Jun 2025 18:40:20 GMT
- Title: Multivariate Long-term Time Series Forecasting with Fourier Neural Filter
- Authors: Chenheng Xu, Dan Wu, Yixin Zhu, Ying Nian Wu,
- Abstract summary: We introduce FNF as the backbone and DBD as architecture to provide excellent learning capabilities and optimal learning pathways for spatial-temporal modeling.<n>We show that FNF unifies local time-domain and global frequency-domain information processing within a single backbone that extends naturally to spatial modeling.
- Score: 55.09326865401653
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Multivariate long-term time series forecasting has been suffering from the challenge of capturing both temporal dependencies within variables and spatial correlations across variables simultaneously. Current approaches predominantly repurpose backbones from natural language processing or computer vision (e.g., Transformers), which fail to adequately address the unique properties of time series (e.g., periodicity). The research community lacks a dedicated backbone with temporal-specific inductive biases, instead relying on domain-agnostic backbones supplemented with auxiliary techniques (e.g., signal decomposition). We introduce FNF as the backbone and DBD as the architecture to provide excellent learning capabilities and optimal learning pathways for spatio-temporal modeling, respectively. Our theoretical analysis proves that FNF unifies local time-domain and global frequency-domain information processing within a single backbone that extends naturally to spatial modeling, while information bottleneck theory demonstrates that DBD provides superior gradient flow and representation capacity compared to existing unified or sequential architectures. Our empirical evaluation across 11 public benchmark datasets spanning five domains (energy, meteorology, transportation, environment, and nature) confirms state-of-the-art performance with consistent hyperparameter settings. Notably, our approach achieves these results without any auxiliary techniques, suggesting that properly designed neural architectures can capture the inherent properties of time series, potentially transforming time series modeling in scientific and industrial applications.
Related papers
- FR-Mamba: Time-Series Physical Field Reconstruction Based on State Space Model [9.340916033226604]
Physical field reconstruction aims to predict the state distribution of physical quantities based on limited sensor measurements.<n>Existing deep learning methods often fail to capture long-range temporal, time-evolving dependencies.<n>We propose FR-Mamba, a novel flow field reconstruction framework based on state space modeling.
arXiv Detail & Related papers (2025-05-21T23:54:36Z) - MFRS: A Multi-Frequency Reference Series Approach to Scalable and Accurate Time-Series Forecasting [51.94256702463408]
Time series predictability is derived from periodic characteristics at different frequencies.<n>We propose a novel time series forecasting method based on multi-frequency reference series correlation analysis.<n> Experiments on major open and synthetic datasets show state-of-the-art performance.
arXiv Detail & Related papers (2025-03-11T11:40:14Z) - TS-LIF: A Temporal Segment Spiking Neuron Network for Time Series Forecasting [27.91825785119938]
Spiking Neural Networks (SNNs) offer a promising, biologically inspired approach for processing data for time series forecasting.<n>We introduce the Temporal Leaky Segment Integrate-and-Fire model, featuring a dual-compartment architecture.<n> Experimental results show that TS-LIF outperforms traditional SNNs in time series forecasting.
arXiv Detail & Related papers (2025-03-07T03:06:21Z) - Cross Space and Time: A Spatio-Temporal Unitized Model for Traffic Flow Forecasting [16.782154479264126]
Predicting backbone-temporal traffic flow presents challenges due to complex interactions between temporal factors.
Existing approaches address these dimensions in isolation, neglecting their critical interdependencies.
In this paper, we introduce Sanonymous-Temporal Unitized Unitized Cell (ASTUC), a unified framework designed to capture both spatial and temporal dependencies.
arXiv Detail & Related papers (2024-11-14T07:34:31Z) - Towards Generalisable Time Series Understanding Across Domains [10.350643783811174]
We introduce a novel pre-training paradigm specifically designed to handle time series heterogeneity.<n>We propose a tokeniser with learnable domain signatures, a dual masking strategy, and a normalised cross-correlation loss.<n>Our code and pre-trained weights are available at https://www.oetu.com/oetu/otis.
arXiv Detail & Related papers (2024-10-09T17:09:30Z) - TimeDiT: General-purpose Diffusion Transformers for Time Series Foundation Model [11.281386703572842]
TimeDiT is a diffusion transformer model that combines temporal dependency learning with probabilistic sampling.<n>TimeDiT employs a unified masking mechanism to harmonize the training and inference process across diverse tasks.<n>Our systematic evaluation demonstrates TimeDiT's effectiveness both in fundamental tasks, i.e., forecasting and imputation, through zero-shot/fine-tuning.
arXiv Detail & Related papers (2024-09-03T22:31:57Z) - FAITH: Frequency-domain Attention In Two Horizons for Time Series Forecasting [13.253624747448935]
Time Series Forecasting plays a crucial role in various fields such as industrial equipment maintenance, meteorology, energy consumption, traffic flow and financial investment.
Current deep learning-based predictive models often exhibit a significant deviation between their forecasting outcomes and the ground truth.
We propose a novel model Frequency-domain Attention In Two Horizons, which decomposes time series into trend and seasonal components.
arXiv Detail & Related papers (2024-05-22T02:37:02Z) - PDETime: Rethinking Long-Term Multivariate Time Series Forecasting from
the perspective of partial differential equations [49.80959046861793]
We present PDETime, a novel LMTF model inspired by the principles of Neural PDE solvers.
Our experimentation across seven diversetemporal real-world LMTF datasets reveals that PDETime adapts effectively to the intrinsic nature of the data.
arXiv Detail & Related papers (2024-02-25T17:39:44Z) - TEMPO: Prompt-based Generative Pre-trained Transformer for Time Series Forecasting [24.834846119163885]
We propose a novel framework, TEMPO, that can effectively learn time series representations.
TEMPO expands the capability for dynamically modeling real-world temporal phenomena from data within diverse domains.
arXiv Detail & Related papers (2023-10-08T00:02:25Z) - Multivariate Time Series Forecasting with Dynamic Graph Neural ODEs [65.18780403244178]
We propose a continuous model to forecast Multivariate Time series with dynamic Graph neural Ordinary Differential Equations (MTGODE)
Specifically, we first abstract multivariate time series into dynamic graphs with time-evolving node features and unknown graph structures.
Then, we design and solve a neural ODE to complement missing graph topologies and unify both spatial and temporal message passing.
arXiv Detail & Related papers (2022-02-17T02:17:31Z) - Supporting Optimal Phase Space Reconstructions Using Neural Network
Architecture for Time Series Modeling [68.8204255655161]
We propose an artificial neural network with a mechanism to implicitly learn the phase spaces properties.
Our approach is either as competitive as or better than most state-of-the-art strategies.
arXiv Detail & Related papers (2020-06-19T21:04:47Z) - Connecting the Dots: Multivariate Time Series Forecasting with Graph
Neural Networks [91.65637773358347]
We propose a general graph neural network framework designed specifically for multivariate time series data.
Our approach automatically extracts the uni-directed relations among variables through a graph learning module.
Our proposed model outperforms the state-of-the-art baseline methods on 3 of 4 benchmark datasets.
arXiv Detail & Related papers (2020-05-24T04:02:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.