論文の概要: LaMPP: Language Models as Probabilistic Priors for Perception and Action
- arxiv url: http://arxiv.org/abs/2302.02801v1
- Date: Fri, 3 Feb 2023 15:14:04 GMT
- ステータス: 処理完了
- システム内更新日: 2023-02-07 16:26:59.319682
- Title: LaMPP: Language Models as Probabilistic Priors for Perception and Action
- Title(参考訳): LaMPP: 知覚と行動の確率論的優先順位としての言語モデル
- Authors: Belinda Z. Li, William Chen, Pratyusha Sharma, Jacob Andreas
- Abstract要約: 非言語的知覚と制御タスクに言語モデルを活用する方法を示す。
提案手法は,確率的グラフィカルモデルにおけるラベリングと意思決定を推論として用いている。
- 参考スコア(独自算出の注目度): 38.07277869107474
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Language models trained on large text corpora encode rich distributional
information about real-world environments and action sequences. This
information plays a crucial role in current approaches to language processing
tasks like question answering and instruction generation. We describe how to
leverage language models for *non-linguistic* perception and control tasks. Our
approach casts labeling and decision-making as inference in probabilistic
graphical models in which language models parameterize prior distributions over
labels, decisions and parameters, making it possible to integrate uncertain
observations and incomplete background knowledge in a principled way. Applied
to semantic segmentation, household navigation, and activity recognition tasks,
this approach improves predictions on rare, out-of-distribution, and
structurally novel inputs.
- Abstract(参考訳): 大規模テキストコーパスで訓練された言語モデルは、実環境やアクションシーケンスに関する豊富な分布情報をエンコードする。
この情報は、質問応答や命令生成といった言語処理タスクに対する現在のアプローチにおいて重要な役割を果たす。
非言語的な*知覚と制御タスクに言語モデルを活用する方法について説明する。
言語モデルがラベル,決定,パラメータ上の事前分布をパラメータ化し,不確定な観察と不完全な背景知識を原則的に統合する確率的グラフィカルモデルにおいて,ラベリングと意思決定を推論として位置づける。
セマンティックセグメンテーション、家庭内ナビゲーション、行動認識タスクに適用すると、この手法は稀、アウト・オブ・ディストリビューション、構造的に新しい入力の予測を改善する。
関連論文リスト
- Boosting the Capabilities of Compact Models in Low-Data Contexts with Large Language Models and Retrieval-Augmented Generation [2.9921619703037274]
本稿では,形態素解析の言語タスクにおいて,より小さなモデルの出力を補正するために,大言語モデル(LLM)を基盤とした検索拡張生成(RAG)フレームワークを提案する。
データ不足や訓練可能なパラメータの不足を補うために,言語情報を活用するとともに,LLMを通して解釈・蒸留された記述文法からの入力を許容する。
コンパクトなRAG支援モデルがデータスカース設定に極めて有効であることを示し、このタスクとターゲット言語に対する新しい最先端技術を実現する。
論文 参考訳(メタデータ) (2024-10-01T04:20:14Z) - Learning Phonotactics from Linguistic Informants [54.086544221761486]
本モデルでは,情報理論的なポリシーの1つに従って,データポイントを反復的に選択または合成する。
提案モデルでは,情報提供者を問う項目の選択に使用する情報理論のポリシーが,完全教師付きアプローチに匹敵する,あるいはそれ以上の効率性が得られることがわかった。
論文 参考訳(メタデータ) (2024-05-08T00:18:56Z) - An Overview on Language Models: Recent Developments and Outlook [32.528770408502396]
従来の言語モデル(CLM)は、因果的に言語シーケンスの確率を予測することを目的としている。
事前学習言語モデル(PLM)はより広範な概念をカバーし、因果逐次モデリングと下流アプリケーションのための微調整の両方に使用することができる。
論文 参考訳(メタデータ) (2023-03-10T07:55:00Z) - Few-shot Subgoal Planning with Language Models [58.11102061150875]
事前訓練された言語モデルにエンコードされた言語は、細粒度のサブゴール列を推測できることを示す。
サブゴナル・インスペクションを強く仮定する最近の手法とは対照的に,我々の実験では,詳細なサブゴラル・シーケンスを微調整せずに推論できる言語モデルが示されている。
論文 参考訳(メタデータ) (2022-05-28T01:03:30Z) - Analyzing the Limits of Self-Supervision in Handling Bias in Language [52.26068057260399]
我々は、言語モデルが、認識、識別、抽出、言い換えの4つのタスクのセマンティクスをいかにうまく捉えているかを評価する。
分析の結果,言語モデルでは,ジェンダーや政治的アフィリエイトなど,様々なバイアス次元にまたがって,これらのタスクを広範囲にわたって実行することが可能であることが示唆された。
論文 参考訳(メタデータ) (2021-12-16T05:36:08Z) - Probing Linguistic Information For Logical Inference In Pre-trained
Language Models [2.4366811507669124]
本稿では,事前学習した言語モデル表現における論理推論のための言語情報探索手法を提案する。
i)事前学習された言語モデルは、推論のためにいくつかの種類の言語情報を符号化するが、弱符号化された情報もいくつか存在する。
シンボリック推論支援のためのセマンティックおよび背景知識基盤としての言語モデルの可能性を実証した。
論文 参考訳(メタデータ) (2021-12-03T07:19:42Z) - Differentiable Prompt Makes Pre-trained Language Models Better Few-shot
Learners [23.150999852147283]
本研究は,differiAble pRompT (DART) という新規で効率的なアプローチを提案する。
小さな言語モデルを、素早いエンジニアリングなしで、より優れた数ショットの学習者に変換することができる。
標準NLPタスクの包括的な評価は、提案手法がより優れた数ショット性能を実現することを示す。
論文 参考訳(メタデータ) (2021-08-30T12:29:25Z) - Cross-lingual Spoken Language Understanding with Regularized
Representation Alignment [71.53159402053392]
外部リソースを使わずに言語間で単語レベルの表現と文レベルの表現を整列する正規化手法を提案する。
言語間言語理解タスクの実験により、我々のモデルは、数ショットとゼロショットの両方のシナリオにおいて、最先端の手法よりも優れていることが示された。
論文 参考訳(メタデータ) (2020-09-30T08:56:53Z) - How Context Affects Language Models' Factual Predictions [134.29166998377187]
検索システムからの情報を学習済みの言語モデルと純粋に教師なしの方法で統合する。
この方法で事前学習された言語モデルを拡張することで、性能が劇的に向上し、教師なしにもかかわらず、結果として得られるシステムは、教師なしの機械読解ベースラインと競合する、と報告する。
論文 参考訳(メタデータ) (2020-05-10T09:28:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。