論文の概要: Stop overkilling simple tasks with black-box models and use transparent
models instead
- arxiv url: http://arxiv.org/abs/2302.02804v3
- Date: Mon, 18 Sep 2023 14:34:27 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-20 00:49:59.938316
- Title: Stop overkilling simple tasks with black-box models and use transparent
models instead
- Title(参考訳): ブラックボックスモデルで単純なタスクをオーバーキルしなくなり、代わりに透明モデルを使用する
- Authors: Matteo Rizzo, Matteo Marcuzzo, Alessandro Zangari, Andrea Gasparetto,
Andrea Albarelli
- Abstract要約: ディープラーニングアプローチは、生データから自律的に機能を抽出することができる。
これにより、機能エンジニアリングプロセスをバイパスすることができる。
ディープラーニング戦略は、しばしば精度で従来のモデルより優れている。
- 参考スコア(独自算出の注目度): 57.42190785269343
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In recent years, the employment of deep learning methods has led to several
significant breakthroughs in artificial intelligence. Different from
traditional machine learning models, deep learning-based approaches are able to
extract features autonomously from raw data. This allows for bypassing the
feature engineering process, which is generally considered to be both
error-prone and tedious. Moreover, deep learning strategies often outperform
traditional models in terms of accuracy.
- Abstract(参考訳): 近年、ディープラーニングの手法が採用され、人工知能にいくつかの大きなブレークスルーをもたらした。
従来の機械学習モデルとは異なり、ディープラーニングベースのアプローチは、生データから自律的に特徴を抽出することができる。
これにより、一般的にエラーを起こしやすく、面倒であると考えられる機能エンジニアリングプロセスをバイパスすることができる。
さらに、ディープラーニング戦略は、精度で従来のモデルより優れていることが多い。
関連論文リスト
- PILOT: A Pre-Trained Model-Based Continual Learning Toolbox [71.63186089279218]
本稿では,PILOTとして知られるモデルベース連続学習ツールボックスについて紹介する。
一方、PILOTはL2P、DualPrompt、CODA-Promptといった事前学習モデルに基づいて、最先端のクラスインクリメンタル学習アルゴリズムを実装している。
一方、PILOTは、事前学習されたモデルの文脈に典型的なクラス増分学習アルゴリズムを適合させ、それらの効果を評価する。
論文 参考訳(メタデータ) (2023-09-13T17:55:11Z) - From Actions to Events: A Transfer Learning Approach Using Improved Deep
Belief Networks [1.0554048699217669]
本稿では,エネルギーモデルを用いた行動認識からイベント認識への知識マッピング手法を提案する。
このようなモデルはすべてのフレームを同時に処理し、学習プロセスを通じて空間的および時間的情報を運ぶことができる。
論文 参考訳(メタデータ) (2022-11-30T14:47:10Z) - Model-Based Deep Learning: On the Intersection of Deep Learning and
Optimization [101.32332941117271]
決定アルゴリズムは様々なアプリケーションで使われている。
数理モデルに頼らずにデータから調整された高度パラメトリックアーキテクチャを使用するディープラーニングアプローチが、ますます人気が高まっている。
モデルに基づく最適化とデータ中心のディープラーニングは、しばしば異なる規律とみなされる。
論文 参考訳(メタデータ) (2022-05-05T13:40:08Z) - Towards Interpretable Deep Reinforcement Learning Models via Inverse
Reinforcement Learning [12.659475399995717]
機械学習モデルのブラックボックスの性質はまだ未解決の問題だ。
本稿では,逆逆強化学習を利用した新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2022-03-30T17:01:59Z) - Capturing and incorporating expert knowledge into machine learning
models for quality prediction in manufacturing [0.0]
本研究では,小規模データセットを用いた機械学習手法を用いて品質予測モデルを構築するための一般的な手法を提案する。
提案手法は,プロセススペシャリストが規定するすべての専門知識に厳密に準拠する予測モデルを生成する。
論文 参考訳(メタデータ) (2022-02-04T07:22:29Z) - Model-Based Deep Learning [155.063817656602]
信号処理、通信、制御は伝統的に古典的な統計モデリング技術に依存している。
ディープニューラルネットワーク(DNN)は、データから操作を学ぶ汎用アーキテクチャを使用し、優れたパフォーマンスを示す。
私たちは、原理数学モデルとデータ駆動システムを組み合わせて両方のアプローチの利点を享受するハイブリッド技術に興味があります。
論文 参考訳(メタデータ) (2020-12-15T16:29:49Z) - Experimental Design for Overparameterized Learning with Application to
Single Shot Deep Active Learning [5.141687309207561]
現代の機械学習モデルは、大量のラベル付きデータに基づいて訓練されている。
大量のラベル付きデータへのアクセスは、しばしば制限またはコストがかかる。
トレーニングセットをキュレートするための新しい設計戦略を提案する。
論文 参考訳(メタデータ) (2020-09-27T11:27:49Z) - Transfer Learning without Knowing: Reprogramming Black-box Machine
Learning Models with Scarce Data and Limited Resources [78.72922528736011]
そこで我々は,ブラックボックス・アタベラル・リプログラミング (BAR) という新しい手法を提案する。
ゼロオーダー最適化とマルチラベルマッピング技術を用いて、BARは入力出力応答のみに基づいてブラックボックスMLモデルをプログラムする。
BARは最先端の手法より優れ、バニラ対逆プログラミング法に匹敵する性能を得る。
論文 参考訳(メタデータ) (2020-07-17T01:52:34Z) - Model-Based Robust Deep Learning: Generalizing to Natural,
Out-of-Distribution Data [104.69689574851724]
本稿では,摂動に基づく逆方向の強靭性からモデルに基づく頑健な深層学習へのパラダイムシフトを提案する。
我々の目標は、深層ニューラルネットワークを訓練し、データの自然な変動に対して堅牢にするための一般的なトレーニングアルゴリズムを提供することです。
論文 参考訳(メタデータ) (2020-05-20T13:46:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。