論文の概要: Investigating the use of ChatGPT for the scheduling of construction
projects
- arxiv url: http://arxiv.org/abs/2302.02805v1
- Date: Fri, 27 Jan 2023 12:05:44 GMT
- ステータス: 処理完了
- システム内更新日: 2023-02-12 13:14:30.698689
- Title: Investigating the use of ChatGPT for the scheduling of construction
projects
- Title(参考訳): 建築計画のスケジューリングにおけるChatGPTの利用の検討
- Authors: Samuel A. Prieto, Eyob T. Mengiste, Borja Garc\'ia de Soto
- Abstract要約: 本稿では,ChatGPTを用いて簡単な建設計画の構築スケジュールを生成する手法を提案する。
以上の結果から,ChatGPTは,提案するスコープの要件を満たす論理的アプローチに従って,一貫性のあるスケジュールを生成することができることがわかった。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Large language models such as ChatGPT have the potential to revolutionize the
construction industry by automating repetitive and time-consuming tasks. This
paper presents a study in which ChatGPT was used to generate a construction
schedule for a simple construction project. The output from ChatGPT was
evaluated by a pool of participants that provided feedback regarding their
overall interaction experience and the quality of the output. The results show
that ChatGPT can generate a coherent schedule that follows a logical approach
to fulfill the requirements of the scope indicated. The participants had an
overall positive interaction experience and indicated the great potential of
such a tool to automate many preliminary and time-consuming tasks. However, the
technology still has limitations, and further development is needed before it
can be widely adopted in the industry. Overall, this study highlights the
potential of using large language models in the construction industry and the
need for further research.
- Abstract(参考訳): ChatGPTのような大規模言語モデルは、繰り返しや時間を要するタスクを自動化することで、建設業界に革命をもたらす可能性がある。
本稿では,ChatGPTを用いて簡単な建設計画の構築スケジュールを生成する手法を提案する。
chatgptのアウトプットは、全体的なインタラクションエクスペリエンスとアウトプットの品質に関するフィードバックを提供する参加者のプールによって評価された。
その結果、chatgptは、示されたスコープの要件を満たす論理的アプローチに従って、コヒーレントなスケジュールを生成することができる。
参加者は、全体的なポジティブな対話体験を持ち、このようなツールが多くの予備的および時間を要するタスクを自動化する大きな可能性を示した。
しかし、この技術には依然として制限があり、業界に広く採用される前にさらなる開発が必要である。
本研究は,建設業における大規模言語モデルの利用の可能性とさらなる研究の必要性を明らかにするものである。
関連論文リスト
- Beyond Code Generation: An Observational Study of ChatGPT Usage in Software Engineering Practice [3.072802875195726]
我々は、ChatGPTを1週間の業務で使用している24人のプロのソフトウェアエンジニアについて、観察的研究を行った。
ChatGPTが使えるソフトウェアアーティファクト(例えばコード)を生成することを期待するのではなく、実践者はChatGPTを使ってタスクの解決方法やトピックについてより抽象的な言葉で学ぶことが多い。
論文 参考訳(メタデータ) (2024-04-23T10:34:16Z) - Rocks Coding, Not Development--A Human-Centric, Experimental Evaluation
of LLM-Supported SE Tasks [9.455579863269714]
コーディングタスクやソフトウェア開発の典型的なタスクにおいて,ChatGPTがどの程度役に立つかを検討した。
単純なコーディング問題ではChatGPTはうまく機能していましたが、典型的なソフトウェア開発タスクをサポートするパフォーマンスはそれほど良くありませんでした。
そこで本研究では,ChatGPTを用いたソフトウェアエンジニアリングタスクを現実の開発者に提供する。
論文 参考訳(メタデータ) (2024-02-08T13:07:31Z) - Exploring ChatGPT's Capabilities on Vulnerability Management [56.4403395100589]
我々は、70,346のサンプルを含む大規模なデータセットを用いて、完全な脆弱性管理プロセスを含む6つのタスクでChatGPTの機能を探求する。
注目すべき例として、ChatGPTのソフトウェアバグレポートのタイトル生成などのタスクにおける熟練度がある。
以上の結果から,ChatGPTが抱える障害が明らかとなり,将来的な方向性に光を当てた。
論文 参考訳(メタデータ) (2023-11-11T11:01:13Z) - Hybrid Long Document Summarization using C2F-FAR and ChatGPT: A
Practical Study [1.933681537640272]
ChatGPTは、大規模言語モデル(LLM)分野における最新のブレークスルーである。
本稿では,ビジネス記事や書籍などの長い文書のハイブリッド抽出と要約パイプラインを提案する。
以上の結果から,ChatGPTの使用は長文を要約するための非常に有望なアプローチであるが,まだ成熟していないことが示唆された。
論文 参考訳(メタデータ) (2023-06-01T21:58:33Z) - A Systematic Study and Comprehensive Evaluation of ChatGPT on Benchmark
Datasets [19.521390684403293]
本稿では,ChatGPTの性能を多種多様な学術データセット上で徹底的に評価する。
具体的には、140タスクにわたるChatGPTを評価し、これらのデータセットで生成される255Kの応答を分析する。
論文 参考訳(メタデータ) (2023-05-29T12:37:21Z) - ChatGPT Beyond English: Towards a Comprehensive Evaluation of Large
Language Models in Multilingual Learning [70.57126720079971]
大規模言語モデル(LLM)は、自然言語処理(NLP)において最も重要なブレークスルーとして登場した。
本稿では,高,中,低,低リソースの37言語を対象として,ChatGPTを7つのタスクで評価する。
従来のモデルと比較すると,様々なNLPタスクや言語に対するChatGPTの性能は低下していた。
論文 参考訳(メタデータ) (2023-04-12T05:08:52Z) - Does Synthetic Data Generation of LLMs Help Clinical Text Mining? [51.205078179427645]
臨床テキストマイニングにおけるOpenAIのChatGPTの可能性を検討する。
本稿では,高品質な合成データを大量に生成する新たな学習パラダイムを提案する。
提案手法により,下流タスクの性能が大幅に向上した。
論文 参考訳(メタデータ) (2023-03-08T03:56:31Z) - Can ChatGPT Understand Too? A Comparative Study on ChatGPT and
Fine-tuned BERT [103.57103957631067]
チャットGPTは、人間の質問に対する流動的で高品質な応答を生成できるため、大きな注目を集めている。
そこで我々は,ChatGPTの理解能力を,最も人気のあるGLUEベンチマークで評価し,より詳細な4種類のBERTスタイルのモデルと比較した。
2)ChatGPTは,感情分析や質問応答タスクにおいて,BERTと同等のパフォーマンスを達成している。
論文 参考訳(メタデータ) (2023-02-19T12:29:33Z) - Conversational AI-Powered Design: ChatGPT as Designer, User, and Product [0.0]
本研究では,人間中心の設計プロセスにおけるChatGPTの機能について検討する。
この目的のために、ChatGPTを利用してペルソナを生成し、架空のユーザとのインタビューをシミュレートし、新しいデザインアイデアを作成し、使用シナリオをシミュレートし、ユーザエクスペリエンスを評価する仮説設計プロジェクトが行われた。
論文 参考訳(メタデータ) (2023-02-15T00:14:17Z) - Is ChatGPT a General-Purpose Natural Language Processing Task Solver? [113.22611481694825]
大規模言語モデル(LLM)は、さまざまな自然言語処理(NLP)タスクをゼロショットで実行できることを実証している。
近年、ChatGPTのデビューは自然言語処理(NLP)コミュニティから大きな注目を集めている。
ChatGPTが多くのNLPタスクをゼロショットで実行できるジェネラリストモデルとして機能するかどうかはまだ分かっていない。
論文 参考訳(メタデータ) (2023-02-08T09:44:51Z) - Robust Conversational AI with Grounded Text Generation [77.56950706340767]
GTGは、大規模なTransformerニューラルネットワークをバックボーンとして使用するハイブリッドモデルである。
タスク完了のための対話的信念状態と実世界の知識に基づく応答を生成する。
論文 参考訳(メタデータ) (2020-09-07T23:49:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。