Controllable Lexical Simplification for English
- URL: http://arxiv.org/abs/2302.02900v1
- Date: Mon, 6 Feb 2023 16:09:27 GMT
- Title: Controllable Lexical Simplification for English
- Authors: Kim Cheng Sheang, Daniel Ferr\'es, Horacio Saggion
- Abstract summary: We present a Controllable Lexical Simplification system fine-tuned with T5.
Our model performs comparable to LSBert and even outperforms it in some cases.
- Score: 3.994126642748072
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Fine-tuning Transformer-based approaches have recently shown exciting results
on sentence simplification task. However, so far, no research has applied
similar approaches to the Lexical Simplification (LS) task. In this paper, we
present ConLS, a Controllable Lexical Simplification system fine-tuned with T5
(a Transformer-based model pre-trained with a BERT-style approach and several
other tasks). The evaluation results on three datasets (LexMTurk, BenchLS, and
NNSeval) have shown that our model performs comparable to LSBert (the current
state-of-the-art) and even outperforms it in some cases. We also conducted a
detailed comparison on the effectiveness of control tokens to give a clear view
of how each token contributes to the model.
Related papers
- Fine-Tuning with Divergent Chains of Thought Boosts Reasoning Through Self-Correction in Language Models [63.36637269634553]
We present a novel method of further improving performance by requiring models to compare multiple reasoning chains.
We find that instruction tuning on DCoT datasets boosts the performance of even smaller, and therefore more accessible, language models.
arXiv Detail & Related papers (2024-07-03T15:01:18Z) - ParaICL: Towards Robust Parallel In-Context Learning [74.38022919598443]
Large language models (LLMs) have become the norm in natural language processing.
Few-shot in-context learning (ICL) relies on the choice of few-shot demonstration examples.
We propose a novel method named parallel in-context learning (ParaICL)
arXiv Detail & Related papers (2024-03-31T05:56:15Z) - Token Prediction as Implicit Classification to Identify LLM-Generated
Text [37.89852204279844]
This paper introduces a novel approach for identifying the possible large language models (LLMs) involved in text generation.
Instead of adding an additional classification layer to a base LM, we reframe the classification task as a next-token prediction task.
We utilize the Text-to-Text Transfer Transformer (T5) model as the backbone for our experiments.
arXiv Detail & Related papers (2023-11-15T06:33:52Z) - BLESS: Benchmarking Large Language Models on Sentence Simplification [55.461555829492866]
We present BLESS, a performance benchmark of the most recent state-of-the-art large language models (LLMs) on the task of text simplification (TS)
We assess a total of 44 models, differing in size, architecture, pre-training methods, and accessibility, on three test sets from different domains (Wikipedia, news, and medical) under a few-shot setting.
Our evaluation indicates that the best LLMs, despite not being trained on TS, perform comparably with state-of-the-art TS baselines.
arXiv Detail & Related papers (2023-10-24T12:18:17Z) - Learning to Paraphrase Sentences to Different Complexity Levels [3.0273878903284275]
Sentence simplification is an active research topic in NLP, but its adjacent tasks of sentence complexification and same-level paraphrasing are not.
To train models on all three tasks, we present two new unsupervised datasets.
arXiv Detail & Related papers (2023-08-04T09:43:37Z) - Multilingual Controllable Transformer-Based Lexical Simplification [4.718531520078843]
This paper proposes mTLS, a controllable Transformer-based Lexical Simplification (LS) system fined-tuned with the T5 model.
The novelty of this work lies in the use of language-specific prefixes, control tokens, and candidates extracted from pre-trained masked language models to learn simpler alternatives for complex words.
arXiv Detail & Related papers (2023-07-05T08:48:19Z) - Transformers as Statisticians: Provable In-Context Learning with
In-Context Algorithm Selection [88.23337313766353]
This work first provides a comprehensive statistical theory for transformers to perform ICL.
We show that transformers can implement a broad class of standard machine learning algorithms in context.
A emphsingle transformer can adaptively select different base ICL algorithms.
arXiv Detail & Related papers (2023-06-07T17:59:31Z) - Alleviating Over-smoothing for Unsupervised Sentence Representation [96.19497378628594]
We present a Simple method named Self-Contrastive Learning (SSCL) to alleviate this issue.
Our proposed method is quite simple and can be easily extended to various state-of-the-art models for performance boosting.
arXiv Detail & Related papers (2023-05-09T11:00:02Z) - Detecting Unassimilated Borrowings in Spanish: An Annotated Corpus and
Approaches to Modeling [2.741266294612776]
We introduce a new annotated corpus of Spanish newswire rich in unassimilated lexical borrowings.
We use it to evaluate how several sequence labeling models (CRF, BiLSTM-CRF, and Transformer-based models) perform.
arXiv Detail & Related papers (2022-03-30T09:46:51Z) - Exemplar-Controllable Paraphrasing and Translation using Bitext [57.92051459102902]
We adapt models from prior work to be able to learn solely from bilingual text (bitext)
Our single proposed model can perform four tasks: controlled paraphrase generation in both languages and controlled machine translation in both language directions.
arXiv Detail & Related papers (2020-10-12T17:02:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.