論文の概要: A Multi-Class SWAP-Test Classifier
- arxiv url: http://arxiv.org/abs/2302.02994v1
- Date: Mon, 6 Feb 2023 18:31:43 GMT
- ステータス: 処理完了
- システム内更新日: 2023-02-07 15:23:59.650810
- Title: A Multi-Class SWAP-Test Classifier
- Title(参考訳): マルチクラスSWAPテスト分類器
- Authors: S M Pillay, I Sinayskiy, E Jembere and F Petruccione
- Abstract要約: この研究は、そのバイナリ前駆体と最近の研究におけるラベル状態の使用に触発された最初のマルチクラスSWAP-Test分類器を示す。
従来の研究とは対照的に、必要な量子ビット数、測定戦略、使用する回路の位相はクラス数に不変である。
解析結果と数値シミュレーションの両方で、この分類器は多様な分類問題に適用されるだけでなく、特定の雑音に対して堅牢であることが示された。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multi-class classification problems are fundamental in many varied domains in
research and industry. To solve multi-class classification problems, heuristic
strategies such as One-vs-One or One-vs-All can be employed. However, these
strategies require the number of binary classification models developed to grow
with the number of classes. Recent work in quantum machine learning has seen
the development of multi-class quantum classifiers that circumvent this growth
by learning a mapping between the data and a set of label states. This work
presents the first multi-class SWAP-Test classifier inspired by its binary
predecessor and the use of label states in recent work. With this classifier,
the cost of developing multiple models is avoided. In contrast to previous
work, the number of qubits required, the measurement strategy, and the topology
of the circuits used is invariant to the number of classes. In addition, unlike
other architectures for multi-class quantum classifiers, the state
reconstruction of a single qubit yields sufficient information for multi-class
classification tasks. Both analytical results and numerical simulations show
that this classifier is not only effective when applied to diverse
classification problems but also robust to certain conditions of noise.
- Abstract(参考訳): マルチクラス分類問題は、研究と産業の様々な領域において基本的な問題である。
多クラス分類問題を解決するために、One-vs-OneやOne-vs-Allのようなヒューリスティック戦略を用いることができる。
しかし、これらの戦略は、クラス数で成長するために開発されたバイナリ分類モデルの数を必要とする。
量子機械学習における最近の研究は、データとラベル状態のマッピングを学習することで、この成長を回避するマルチクラス量子分類器の開発を見てきた。
この研究は、そのバイナリ前駆体と最近の研究におけるラベル状態の使用に触発された最初のマルチクラスSWAP-Test分類器を示す。
この分類器により、複数のモデルを開発するコストは回避される。
従来の作業とは対照的に、必要な量子ビット数、測定戦略、使用する回路のトポロジーはクラス数に不変である。
加えて、マルチクラス量子分類器の他のアーキテクチャとは異なり、単一の量子ビットの状態再構成は、マルチクラス分類タスクに十分な情報を与える。
解析結果と数値シミュレーションの両方により, この分類器は, 多様な分類問題に適用する場合に有効であるだけでなく, 一定の雑音条件にも頑健であることが示された。
関連論文リスト
- Generalization Bounds for Few-Shot Transfer Learning with Pretrained
Classifiers [26.844410679685424]
本研究では,新しいクラスに移動可能な分類の表現を基礎モデルで学習する能力について検討する。
クラス-機能-変数の崩壊の場合,新しいクラスで学習した特徴マップのわずかな誤差が小さいことを示す。
論文 参考訳(メタデータ) (2022-12-23T18:46:05Z) - Anomaly Detection using Ensemble Classification and Evidence Theory [62.997667081978825]
本稿では,アンサンブル分類とエビデンス理論を用いた新しい検出手法を提案する。
固体アンサンブル分類器を構築するためのプール選択戦略が提示される。
我々は異常検出手法の不確実性を利用する。
論文 参考訳(メタデータ) (2022-12-23T00:50:41Z) - Bi-directional Feature Reconstruction Network for Fine-Grained Few-Shot
Image Classification [61.411869453639845]
クラス間およびクラス内変動を同時に対応できるバイコンストラクション機構を導入する。
この設計は、モデルがより微妙で差別的な特徴を探索するのに役立つ。
広範に使用されている3つのきめ細かな画像分類データセットに対する実験結果は、一貫して大幅に改善されている。
論文 参考訳(メタデータ) (2022-11-30T16:55:14Z) - Multi-Label Quantification [78.83284164605473]
定量化とは、教師なしデータサンプルにおいて、興味あるクラスの相対周波数の予測子を生成する教師付き学習課題である。
本研究では,その相対頻度をより正確に予測するために,興味あるクラス間の依存関係を活用しようとするクラス有病率値の推定手法を提案する。
論文 参考訳(メタデータ) (2022-11-15T11:29:59Z) - Generalization for multiclass classification with overparameterized
linear models [3.3434274586532515]
クラスが多すぎる限り、多クラス分類は二分分類のように振る舞うことが示される。
様々な技術的課題に加えて、二項分類設定との大きな違いは、クラス数が増加するにつれて、各クラスの正のトレーニング例がマルチクラス設定で比較的少ないことである。
論文 参考訳(メタデータ) (2022-06-03T05:52:43Z) - Evolving Multi-Label Fuzzy Classifier [5.53329677986653]
マルチラベル分類は、同時に複数のクラスに1つのサンプルを割り当てるという問題に対処するために、機械学習コミュニティで多くの注目を集めている。
本稿では,新たなマルチラベルサンプルをインクリメンタルかつシングルパスで自己適応・自己展開可能な多ラベルファジィ分類器(EFC-ML)を提案する。
論文 参考訳(メタデータ) (2022-03-29T08:01:03Z) - Theoretical Insights Into Multiclass Classification: A High-dimensional
Asymptotic View [82.80085730891126]
線形多クラス分類の最初の現代的精度解析を行う。
分析の結果,分類精度は分布に依存していることがわかった。
得られた洞察は、他の分類アルゴリズムの正確な理解の道を開くかもしれない。
論文 参考訳(メタデータ) (2020-11-16T05:17:29Z) - Few-Shot Learning with Intra-Class Knowledge Transfer [100.87659529592223]
アンバランスなデータセットを用いた数発の分類タスクについて検討する。
近年の研究では、生成モデルを用いて数発の授業のトレーニングデータを増やすことで、この課題を解決することが提案されている。
本稿では,近隣クラスが類似した統計情報を共有するという直感で,近隣クラスからのクラス内知識を活用することを提案する。
論文 参考訳(メタデータ) (2020-08-22T18:15:38Z) - Making Use of NXt to Nothing: The Effect of Class Imbalances on DGA
Detection Classifiers [3.0969191504482243]
トレーニングセットに少数のサンプルしか知られていないDGAの含有が、分類器全体の性能に有益か有害かは不明である。
本稿では,各クラスごとの学習サンプルの高評価値を示す,コンテキストレスDGA分類器の包括的分析を行う。
論文 参考訳(メタデータ) (2020-07-01T07:51:12Z) - Many-Class Few-Shot Learning on Multi-Granularity Class Hierarchy [57.68486382473194]
我々は,教師付き学習とメタ学習の両方において,MCFS(Multi-class few-shot)問題について検討した。
本稿では,クラス階層を事前知識として活用し,粗大な分類器を訓練する。
モデル「メモリ拡張階層分類ネットワーク(MahiNet)」は、各粗いクラスが複数の細かなクラスをカバーできる粗い粒度分類を行う。
論文 参考訳(メタデータ) (2020-06-28T01:11:34Z) - Adversarial Multi-Binary Neural Network for Multi-class Classification [19.298875915675502]
マルチタスクフレームワークを使用して、マルチクラス分類に対処する。
我々は,クラス固有の特徴とクラスに依存しない特徴を識別するために,対人訓練を実践する。
論文 参考訳(メタデータ) (2020-03-25T02:19:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。