論文の概要: OTRE: Where Optimal Transport Guided Unpaired Image-to-Image Translation
Meets Regularization by Enhancing
- arxiv url: http://arxiv.org/abs/2302.03003v1
- Date: Mon, 6 Feb 2023 18:39:40 GMT
- ステータス: 処理完了
- システム内更新日: 2023-02-07 15:24:40.017088
- Title: OTRE: Where Optimal Transport Guided Unpaired Image-to-Image Translation
Meets Regularization by Enhancing
- Title(参考訳): OTRE: 最適なトランスポートガイドによる画像から画像への翻訳が正規化を促進
- Authors: Wenhui Zhu, Peijie Qiu, Oana M. Dumitrascu, Jacob Jacob, Mohammad
Farazi, Zhangsihao Yang, Keshav Nandakumar, Yalin Wang
- Abstract要約: そこで本研究では,低品質の網膜CFPを高画質のCFPにマッピングするための画像対画像変換手法を提案する。
我々は,OT誘導画像-画像変換ネットワークで学習した先行情報をプラグインすることで,最先端のモデルに基づく画像再構成手法を一般化した。
実験の結果,最先端の非教師付き競争相手や最先端の教師付き手法に比べて,提案手法の優位性が示された。
- 参考スコア(独自算出の注目度): 4.951748109810726
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Non-mydriatic retinal color fundus photography (CFP) is widely available due
to the advantage of not requiring pupillary dilation, however, is prone to poor
quality due to operators, systemic imperfections, or patient-related causes.
Optimal retinal image quality is mandated for accurate medical diagnoses and
automated analyses. Herein, we leveraged the \emph{Optimal Transport (OT)}
theory to propose an unpaired image-to-image translation scheme for mapping
low-quality retinal CFPs to high-quality counterparts. Furthermore, to improve
the flexibility, robustness, and applicability of our image enhancement
pipeline in the clinical practice, we generalized a state-of-the-art
model-based image reconstruction method, regularization by denoising, by
plugging in priors learned by our OT-guided image-to-image translation network.
We named it as \emph{regularization by enhancing (RE)}. We validated the
integrated framework, OTRE, on three publicly available retinal image datasets
by assessing the quality after enhancement and their performance on various
downstream tasks, including diabetic retinopathy grading, vessel segmentation,
and diabetic lesion segmentation. The experimental results demonstrated the
superiority of our proposed framework over some state-of-the-art unsupervised
competitors and a state-of-the-art supervised method.
- Abstract(参考訳): 瞳孔拡張を必要とせず,術者,全身的不完全性,患者関連疾患などにより品質が低下する可能性があるため,非扁桃体網膜色眼底撮影(cfp)が広く利用可能である。
正確な診断と自動解析のために最適な網膜画像品質が義務付けられている。
そこで我々は,低品質の網膜cfpを高品質のcfpにマッピングする非ペア画像変換方式を提案するために, \emph{optimal transport (ot)理論を用いた。
さらに, 臨床における画像強調パイプラインの柔軟性, ロバスト性, 適用性を向上させるため, ot誘導画像対画像翻訳ネットワークで学習した先行処理をプラグインすることで, 最先端のモデルベース画像再構成法を一般化した。
我々はこれを拡張(RE)により「emph{regularization」と命名した。
糖尿病性網膜症格付け,血管分画,糖尿病性病変分画などのダウンストリームタスクにおける改善後の品質と性能を評価することで,3つの網膜画像データセットで統合フレームワークotreを検証した。
実験の結果,提案手法は,最先端の競争相手や最先端の監視手法よりも優れていることが示された。
関連論文リスト
- CUNSB-RFIE: Context-aware Unpaired Neural Schr"{o}dinger Bridge in Retinal Fundus Image Enhancement [15.399449331371402]
網膜画像強調のための画像から画像への変換パイプラインを提案する。
眼底画像強調フレームワークCUNSB-RFIE (Context-aware Unpaired Neural Schr"odinger Bridge) を命名した。
論文 参考訳(メタデータ) (2024-09-17T08:07:29Z) - Context-Aware Optimal Transport Learning for Retinal Fundus Image Enhancement [1.8339026473337505]
本稿では,未実装の眼底画像強調に対処するためのコンテキストインフォームド・トランスポート(OT)学習フレームワークを提案する。
我々は、地球の距離移動器を用いて、提案した文脈認識OTを導出し、提案した文脈認識OTが確固とした理論的保証を有することを示す。
大規模データセットによる実験結果から,提案手法がいくつかの最先端の教師付きおよび教師なし手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2024-09-12T09:14:37Z) - Bridging Synthetic and Real Images: a Transferable and Multiple
Consistency aided Fundus Image Enhancement Framework [61.74188977009786]
画像強調とドメイン適応を同時に行うために,エンドツーエンドの教師支援フレームワークを提案する。
また,教師ネットワークと学生ネットワークのバックボーンとして,マルチステージ型マルチアテンション・ガイド・エンハンスメント・ネットワーク(MAGE-Net)を提案する。
論文 参考訳(メタデータ) (2023-02-23T06:16:15Z) - Optimal Transport Guided Unsupervised Learning for Enhancing low-quality
Retinal Images [5.4240246179935845]
現実の非ミリ波網膜基底写真は、人工物、不完全、そして低品質である。
高品質な網膜基底画像の高精細化のための,シンプルで効果的なエンドツーエンドフレームワークを提案する。
論文 参考訳(メタデータ) (2023-02-06T18:29:30Z) - Self-supervised Domain Adaptation for Breaking the Limits of Low-quality
Fundus Image Quality Enhancement [14.677912534121273]
低画質の眼底画像とスタイルの整合性は、眼底疾患の診断における不確実性を高める可能性がある。
画像内容、低品質要因、スタイル情報の特徴を乱すために、2つの自己教師付きドメイン適応タスクを定式化する。
我々のDASQE法は,低画質の画像しか得られない場合に,新しい最先端性能を実現する。
論文 参考訳(メタデータ) (2023-01-17T15:07:20Z) - Harmonizing Pathological and Normal Pixels for Pseudo-healthy Synthesis [68.5287824124996]
そこで本研究では,新しいタイプの識別器であるセグメンタを提案し,病変の正確な特定と擬似健康画像の視覚的品質の向上を図っている。
医用画像強調に生成画像を適用し,低コントラスト問題に対処するために拡張結果を利用する。
BraTSのT2モダリティに関する総合的な実験により、提案手法は最先端の手法よりも大幅に優れていることが示された。
論文 参考訳(メタデータ) (2022-03-29T08:41:17Z) - Self-Supervised Learning from Unlabeled Fundus Photographs Improves
Segmentation of the Retina [4.815051667870375]
基礎撮影は網膜イメージングの第一の方法であり、糖尿病網膜症予防に必須である。
現在のセグメンテーション法は、実際の臨床応用に典型的な画像条件や病理の多様性に対して堅牢ではない。
コントラスト型自己教師型学習を用いて,EyePACSデータセットの多種多様な未ラベル画像を利用する。
論文 参考訳(メタデータ) (2021-08-05T18:02:56Z) - On the Robustness of Pretraining and Self-Supervision for a Deep
Learning-based Analysis of Diabetic Retinopathy [70.71457102672545]
糖尿病網膜症における訓練方法の違いによる影響を比較検討した。
本稿では,定量的性能,学習した特徴表現の統計,解釈可能性,画像歪みに対する頑健性など,さまざまな側面について検討する。
以上の結果から,ImageNet事前学習モデルでは,画像歪みに対する性能,一般化,堅牢性が著しく向上していることが示唆された。
論文 参考訳(メタデータ) (2021-06-25T08:32:45Z) - An Interpretable Multiple-Instance Approach for the Detection of
referable Diabetic Retinopathy from Fundus Images [72.94446225783697]
基礎画像における参照糖尿病網膜症検出のための機械学習システムを提案する。
画像パッチから局所情報を抽出し,アテンション機構により効率的に組み合わせることで,高い分類精度を実現することができる。
我々は,現在入手可能な網膜画像データセットに対するアプローチを評価し,最先端の性能を示す。
論文 参考訳(メタデータ) (2021-03-02T13:14:15Z) - Modeling and Enhancing Low-quality Retinal Fundus Images [167.02325845822276]
低画質の眼底画像は臨床観察における不確実性を高め、誤診のリスクを引き起こす。
本稿では,グローバルな劣化要因を抑えるために,臨床指向の基盤拡張ネットワーク(cofe-Net)を提案する。
合成画像と実画像の両方の実験により、我々のアルゴリズムは網膜の細部を失うことなく、低品質の眼底画像を効果的に補正することを示した。
論文 参考訳(メタデータ) (2020-05-12T08:01:16Z) - Retinopathy of Prematurity Stage Diagnosis Using Object Segmentation and
Convolutional Neural Networks [68.96150598294072]
未熟児網膜症(英: Retinopathy of Prematurity、ROP)は、主に体重の低い未熟児に影響を及ぼす眼疾患である。
網膜の血管の増殖を招き、視力喪失を招き、最終的には網膜剥離を招き、失明を引き起こす。
近年,ディープラーニングを用いて診断を自動化する試みが盛んに行われている。
本稿では,従来のモデルの成功を基盤として,オブジェクトセグメンテーションと畳み込みニューラルネットワーク(CNN)を組み合わせた新しいアーキテクチャを開発する。
提案システムでは,まず対象分割モデルを訓練し,画素レベルでの区切り線を識別し,その結果のマスクを追加の"カラー"チャネルとして付加する。
論文 参考訳(メタデータ) (2020-04-03T14:07:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。