Zero-shot Image-to-Image Translation
- URL: http://arxiv.org/abs/2302.03027v1
- Date: Mon, 6 Feb 2023 18:59:51 GMT
- Title: Zero-shot Image-to-Image Translation
- Authors: Gaurav Parmar, Krishna Kumar Singh, Richard Zhang, Yijun Li, Jingwan
Lu, Jun-Yan Zhu
- Abstract summary: We propose pix2pix-zero, an image-to-image translation method that can preserve the original image without manual prompting.
We propose cross-attention guidance, which aims to retain the cross-attention maps of the input image throughout the diffusion process.
Our method does not need additional training for these edits and can directly use the existing text-to-image diffusion model.
- Score: 57.46189236379433
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large-scale text-to-image generative models have shown their remarkable
ability to synthesize diverse and high-quality images. However, it is still
challenging to directly apply these models for editing real images for two
reasons. First, it is hard for users to come up with a perfect text prompt that
accurately describes every visual detail in the input image. Second, while
existing models can introduce desirable changes in certain regions, they often
dramatically alter the input content and introduce unexpected changes in
unwanted regions. In this work, we propose pix2pix-zero, an image-to-image
translation method that can preserve the content of the original image without
manual prompting. We first automatically discover editing directions that
reflect desired edits in the text embedding space. To preserve the general
content structure after editing, we further propose cross-attention guidance,
which aims to retain the cross-attention maps of the input image throughout the
diffusion process. In addition, our method does not need additional training
for these edits and can directly use the existing pre-trained text-to-image
diffusion model. We conduct extensive experiments and show that our method
outperforms existing and concurrent works for both real and synthetic image
editing.
Related papers
- Zero-shot Image Editing with Reference Imitation [50.75310094611476]
We present a new form of editing, termed imitative editing, to help users exercise their creativity more conveniently.
We propose a generative training framework, dubbed MimicBrush, which randomly selects two frames from a video clip, masks some regions of one frame, and learns to recover the masked regions using the information from the other frame.
We experimentally show the effectiveness of our method under various test cases as well as its superiority over existing alternatives.
arXiv Detail & Related papers (2024-06-11T17:59:51Z) - Text-Driven Image Editing via Learnable Regions [74.45313434129005]
We introduce a method for region-based image editing driven by textual prompts, without the need for user-provided masks or sketches.
We show that this simple approach enables flexible editing that is compatible with current image generation models.
Experiments demonstrate the competitive performance of our method in manipulating images with high fidelity and realism that correspond to the provided language descriptions.
arXiv Detail & Related papers (2023-11-28T02:27:31Z) - ReGeneration Learning of Diffusion Models with Rich Prompts for
Zero-Shot Image Translation [8.803251014279502]
Large-scale text-to-image models have demonstrated amazing ability to synthesize diverse and high-fidelity images.
Current models can impose significant changes to the original image content during the editing process.
We propose ReGeneration learning in an image-to-image Diffusion model (ReDiffuser)
arXiv Detail & Related papers (2023-05-08T12:08:12Z) - Prompt Tuning Inversion for Text-Driven Image Editing Using Diffusion
Models [6.34777393532937]
We propose an accurate and quick inversion technique, Prompt Tuning Inversion, for text-driven image editing.
Our proposed editing method consists of a reconstruction stage and an editing stage.
Experiments on ImageNet demonstrate the superior editing performance of our method compared to the state-of-the-art baselines.
arXiv Detail & Related papers (2023-05-08T03:34:33Z) - StyleDiffusion: Prompt-Embedding Inversion for Text-Based Editing [86.92711729969488]
We exploit the amazing capacities of pretrained diffusion models for the editing of images.
They either finetune the model, or invert the image in the latent space of the pretrained model.
They suffer from two problems: Unsatisfying results for selected regions, and unexpected changes in nonselected regions.
arXiv Detail & Related papers (2023-03-28T00:16:45Z) - Pix2Video: Video Editing using Image Diffusion [43.07444438561277]
We investigate how to use pre-trained image models for text-guided video editing.
Our method works in two simple steps: first, we use a pre-trained structure-guided (e.g., depth) image diffusion model to perform text-guided edits on an anchor frame.
We demonstrate that realistic text-guided video edits are possible, without any compute-intensive preprocessing or video-specific finetuning.
arXiv Detail & Related papers (2023-03-22T16:36:10Z) - Exploring Stroke-Level Modifications for Scene Text Editing [86.33216648792964]
Scene text editing (STE) aims to replace text with the desired one while preserving background and styles of the original text.
Previous methods of editing the whole image have to learn different translation rules of background and text regions simultaneously.
We propose a novel network by MOdifying Scene Text image at strokE Level (MOSTEL)
arXiv Detail & Related papers (2022-12-05T02:10:59Z) - Direct Inversion: Optimization-Free Text-Driven Real Image Editing with
Diffusion Models [0.0]
We propose an optimization-free and zero fine-tuning framework that applies complex and non-rigid edits to a single real image via a text prompt.
We prove our method's efficacy in producing high-quality, diverse, semantically coherent, and faithful real image edits.
arXiv Detail & Related papers (2022-11-15T01:07:38Z) - DiffEdit: Diffusion-based semantic image editing with mask guidance [64.555930158319]
DiffEdit is a method to take advantage of text-conditioned diffusion models for the task of semantic image editing.
Our main contribution is able to automatically generate a mask highlighting regions of the input image that need to be edited.
arXiv Detail & Related papers (2022-10-20T17:16:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.