Textualize Visual Prompt for Image Editing via Diffusion Bridge
- URL: http://arxiv.org/abs/2501.03495v2
- Date: Mon, 27 Jan 2025 11:22:55 GMT
- Title: Textualize Visual Prompt for Image Editing via Diffusion Bridge
- Authors: Pengcheng Xu, Qingnan Fan, Fei Kou, Shuai Qin, Hong Gu, Ruoyu Zhao, Charles Ling, Boyu Wang,
- Abstract summary: Current visual prompt methods rely on a pretrained text-guided image-to-image generative model.
We present a framework based on any single text-to-image model without reliance on the explicit image-to-image model.
- Score: 15.696208035498753
- License:
- Abstract: Visual prompt, a pair of before-and-after edited images, can convey indescribable imagery transformations and prosper in image editing. However, current visual prompt methods rely on a pretrained text-guided image-to-image generative model that requires a triplet of text, before, and after images for retraining over a text-to-image model. Such crafting triplets and retraining processes limit the scalability and generalization of editing. In this paper, we present a framework based on any single text-to-image model without reliance on the explicit image-to-image model thus enhancing the generalizability and scalability. Specifically, by leveraging the probability-flow ordinary equation, we construct a diffusion bridge to transfer the distribution between before-and-after images under the text guidance. By optimizing the text via the bridge, the framework adaptively textualizes the editing transformation conveyed by visual prompts into text embeddings without other models. Meanwhile, we introduce differential attention control during text optimization, which disentangles the text embedding from the invariance of the before-and-after images and makes it solely capture the delicate transformation and generalize to edit various images. Experiments on real images validate competitive results on the generalization, contextual coherence, and high fidelity for delicate editing with just one image pair as the visual prompt.
Related papers
- Contrastive Prompts Improve Disentanglement in Text-to-Image Diffusion
Models [68.47333676663312]
We show a simple modification of classifier-free guidance can help disentangle image factors in text-to-image models.
The key idea of our method, Contrastive Guidance, is to characterize an intended factor with two prompts that differ in minimal tokens.
We illustrate whose benefits in three scenarios: (1) to guide domain-specific diffusion models trained on an object class, (2) to gain continuous, rig-like controls for text-to-image generation, and (3) to improve the performance of zero-shot image editors.
arXiv Detail & Related papers (2024-02-21T03:01:17Z) - Text-Driven Image Editing via Learnable Regions [74.45313434129005]
We introduce a method for region-based image editing driven by textual prompts, without the need for user-provided masks or sketches.
We show that this simple approach enables flexible editing that is compatible with current image generation models.
Experiments demonstrate the competitive performance of our method in manipulating images with high fidelity and realism that correspond to the provided language descriptions.
arXiv Detail & Related papers (2023-11-28T02:27:31Z) - Prompt Tuning Inversion for Text-Driven Image Editing Using Diffusion
Models [6.34777393532937]
We propose an accurate and quick inversion technique, Prompt Tuning Inversion, for text-driven image editing.
Our proposed editing method consists of a reconstruction stage and an editing stage.
Experiments on ImageNet demonstrate the superior editing performance of our method compared to the state-of-the-art baselines.
arXiv Detail & Related papers (2023-05-08T03:34:33Z) - Zero-shot Image-to-Image Translation [57.46189236379433]
We propose pix2pix-zero, an image-to-image translation method that can preserve the original image without manual prompting.
We propose cross-attention guidance, which aims to retain the cross-attention maps of the input image throughout the diffusion process.
Our method does not need additional training for these edits and can directly use the existing text-to-image diffusion model.
arXiv Detail & Related papers (2023-02-06T18:59:51Z) - Imagen Editor and EditBench: Advancing and Evaluating Text-Guided Image
Inpainting [53.708523312636096]
We present Imagen Editor, a cascaded diffusion model built, by fine-tuning on text-guided image inpainting.
edits are faithful to the text prompts, which is accomplished by using object detectors to propose inpainting masks during training.
To improve qualitative and quantitative evaluation, we introduce EditBench, a systematic benchmark for text-guided image inpainting.
arXiv Detail & Related papers (2022-12-13T21:25:11Z) - Null-text Inversion for Editing Real Images using Guided Diffusion
Models [44.27570654402436]
We introduce an accurate inversion technique and thus facilitate an intuitive text-based modification of the image.
Our Null-text inversion, based on the publicly available Stable Diffusion model, is extensively evaluated on a variety of images and prompt editing.
arXiv Detail & Related papers (2022-11-17T18:58:14Z) - Direct Inversion: Optimization-Free Text-Driven Real Image Editing with
Diffusion Models [0.0]
We propose an optimization-free and zero fine-tuning framework that applies complex and non-rigid edits to a single real image via a text prompt.
We prove our method's efficacy in producing high-quality, diverse, semantically coherent, and faithful real image edits.
arXiv Detail & Related papers (2022-11-15T01:07:38Z) - eDiffi: Text-to-Image Diffusion Models with an Ensemble of Expert
Denoisers [87.52504764677226]
Large-scale diffusion-based generative models have led to breakthroughs in text-conditioned high-resolution image synthesis.
We train an ensemble of text-to-image diffusion models specialized for different stages synthesis.
Our ensemble of diffusion models, called eDiffi, results in improved text alignment while maintaining the same inference cost.
arXiv Detail & Related papers (2022-11-02T17:43:04Z) - DiffEdit: Diffusion-based semantic image editing with mask guidance [64.555930158319]
DiffEdit is a method to take advantage of text-conditioned diffusion models for the task of semantic image editing.
Our main contribution is able to automatically generate a mask highlighting regions of the input image that need to be edited.
arXiv Detail & Related papers (2022-10-20T17:16:37Z) - Prompt-to-Prompt Image Editing with Cross Attention Control [41.26939787978142]
We present an intuitive prompt-to-prompt editing framework, where the edits are controlled by text only.
We show our results over diverse images and prompts, demonstrating high-quality synthesis and fidelity to the edited prompts.
arXiv Detail & Related papers (2022-08-02T17:55:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.