Undersampling and Cumulative Class Re-decision Methods to Improve
Detection of Agitation in People with Dementia
- URL: http://arxiv.org/abs/2302.03224v3
- Date: Tue, 15 Aug 2023 16:44:02 GMT
- Title: Undersampling and Cumulative Class Re-decision Methods to Improve
Detection of Agitation in People with Dementia
- Authors: Zhidong Meng, Andrea Iaboni, Bing Ye, Kristine Newman, Alex
Mihailidis, Zhihong Deng, and Shehroz S. Khan
- Abstract summary: Agitation is one of the most prevalent symptoms in people with dementia (PwD)
In a previous study, we collected multimodal wearable sensor data from 17 participants for 600 days and developed machine learning models for detecting agitation in one-minute windows.
In this paper, we first implemented different undersampling methods to eliminate the imbalance problem, and came to the conclusion that only 20% of normal behaviour data were adequate to train a competitive agitation detection model.
- Score: 16.949993123698345
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Agitation is one of the most prevalent symptoms in people with dementia (PwD)
that can place themselves and the caregiver's safety at risk. Developing
objective agitation detection approaches is important to support health and
safety of PwD living in a residential setting. In a previous study, we
collected multimodal wearable sensor data from 17 participants for 600 days and
developed machine learning models for detecting agitation in one-minute
windows. However, there are significant limitations in the dataset, such as
imbalance problem and potential imprecise labelsas the occurrence of agitation
is much rarer in comparison to the normal behaviours. In this paper, we first
implemented different undersampling methods to eliminate the imbalance problem,
and came to the conclusion that only 20% of normal behaviour data were adequate
to train a competitive agitation detection model. Then, we designed a weighted
undersampling method to evaluate the manual labeling mechanism given the
ambiguous time interval assumption. After that, the postprocessing method of
cumulative class re-decision (CCR) was proposed based on the historical
sequential information and continuity characteristic of agitation, improving
the decision-making performance for the potential application of agitation
detection system. The results showed that a combination of undersampling and
CCR improved F1-score and other metrics to varying degrees with less training
time and data.
Related papers
- Angel or Devil: Discriminating Hard Samples and Anomaly Contaminations for Unsupervised Time Series Anomaly Detection [4.767887707515356]
Training in unsupervised time series anomaly detection is constantly plagued by the discrimination between harmful anomaly contaminations' and beneficial hard normal samples'
arXiv Detail & Related papers (2024-10-26T13:59:23Z) - Multi-CATE: Multi-Accurate Conditional Average Treatment Effect Estimation Robust to Unknown Covariate Shifts [12.289361708127876]
We use methodology for learning multi-accurate predictors to post-process CATE T-learners.
We show how this approach can combine (large) confounded observational and (smaller) randomized datasets.
arXiv Detail & Related papers (2024-05-28T14:12:25Z) - Does DetectGPT Fully Utilize Perturbation? Bridging Selective Perturbation to Fine-tuned Contrastive Learning Detector would be Better [21.901523394933076]
We propose a novel fine-tuned detector, Pecola, bridging metric-based and fine-tuned methods by contrastive learning on selective perturbation.
Experiments show that Pecola outperforms the state-of-the-art (SOTA) by 1.20% in accuracy on average on four public datasets.
arXiv Detail & Related papers (2024-02-01T01:23:07Z) - Improving Diffusion Models for ECG Imputation with an Augmented Template
Prior [43.6099225257178]
noisy and poor-quality recordings are a major issue for signals collected using mobile health systems.
Recent studies have explored the imputation of missing values in ECG with probabilistic time-series models.
We present a template-guided denoising diffusion probabilistic model (DDPM), PulseDiff, which is conditioned on an informative prior for a range of health conditions.
arXiv Detail & Related papers (2023-10-24T11:34:15Z) - Leveraging Unlabelled Data in Multiple-Instance Learning Problems for
Improved Detection of Parkinsonian Tremor in Free-Living Conditions [80.88681952022479]
We introduce a new method for combining semi-supervised with multiple-instance learning.
We show that by leveraging the unlabelled data of 454 subjects we can achieve large performance gains in per-subject tremor detection.
arXiv Detail & Related papers (2023-04-29T12:25:10Z) - Semi-Supervised Deep Regression with Uncertainty Consistency and
Variational Model Ensembling via Bayesian Neural Networks [31.67508478764597]
We propose a novel approach to semi-supervised regression, namely Uncertainty-Consistent Variational Model Ensembling (UCVME)
Our consistency loss significantly improves uncertainty estimates and allows higher quality pseudo-labels to be assigned greater importance under heteroscedastic regression.
Experiments show that our method outperforms state-of-the-art alternatives on different tasks and can be competitive with supervised methods that use full labels.
arXiv Detail & Related papers (2023-02-15T10:40:51Z) - MAPS: A Noise-Robust Progressive Learning Approach for Source-Free
Domain Adaptive Keypoint Detection [76.97324120775475]
Cross-domain keypoint detection methods always require accessing the source data during adaptation.
This paper considers source-free domain adaptive keypoint detection, where only the well-trained source model is provided to the target domain.
arXiv Detail & Related papers (2023-02-09T12:06:08Z) - Scale-Equivalent Distillation for Semi-Supervised Object Detection [57.59525453301374]
Recent Semi-Supervised Object Detection (SS-OD) methods are mainly based on self-training, generating hard pseudo-labels by a teacher model on unlabeled data as supervisory signals.
We analyze the challenges these methods meet with the empirical experiment results.
We introduce a novel approach, Scale-Equivalent Distillation (SED), which is a simple yet effective end-to-end knowledge distillation framework robust to large object size variance and class imbalance.
arXiv Detail & Related papers (2022-03-23T07:33:37Z) - Bootstrapping Your Own Positive Sample: Contrastive Learning With
Electronic Health Record Data [62.29031007761901]
This paper proposes a novel contrastive regularized clinical classification model.
We introduce two unique positive sampling strategies specifically tailored for EHR data.
Our framework yields highly competitive experimental results in predicting the mortality risk on real-world COVID-19 EHR data.
arXiv Detail & Related papers (2021-04-07T06:02:04Z) - Predicting Parkinson's Disease with Multimodal Irregularly Collected
Longitudinal Smartphone Data [75.23250968928578]
Parkinsons Disease is a neurological disorder and prevalent in elderly people.
Traditional ways to diagnose the disease rely on in-person subjective clinical evaluations on the quality of a set of activity tests.
We propose a novel time-series based approach to predicting Parkinson's Disease with raw activity test data collected by smartphones in the wild.
arXiv Detail & Related papers (2020-09-25T01:50:15Z) - Detecting Parkinsonian Tremor from IMU Data Collected In-The-Wild using
Deep Multiple-Instance Learning [59.74684475991192]
Parkinson's Disease (PD) is a slowly evolving neuro-logical disease that affects about 1% of the population above 60 years old.
PD symptoms include tremor, rigidity and braykinesia.
We present a method for automatically identifying tremorous episodes related to PD, based on IMU signals captured via a smartphone device.
arXiv Detail & Related papers (2020-05-06T09:02:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.