Comprehensive Methodology for Sample Augmentation in EEG Biomarker Studies for Alzheimers Risk Classification
- URL: http://arxiv.org/abs/2411.17717v1
- Date: Wed, 20 Nov 2024 10:31:02 GMT
- Title: Comprehensive Methodology for Sample Augmentation in EEG Biomarker Studies for Alzheimers Risk Classification
- Authors: Veronica Henao Isaza, David Aguillon, Carlos Andres Tobon Quintero, Francisco Lopera, John Fredy Ochoa Gomez,
- Abstract summary: Alzheimer's disease (AD), the leading type, accounts for 70% of cases.
EEG measures show promise in identifying AD risk, but obtaining large samples for reliable comparisons is challenging.
This study integrates signal processing, harmonization, and statistical techniques to enhance sample size and improve AD risk classification reliability.
- Score: 0.0
- License:
- Abstract: Background: Dementia, marked by cognitive decline, is a global health challenge. Alzheimer's disease (AD), the leading type, accounts for ~70% of cases. Electroencephalography (EEG) measures show promise in identifying AD risk, but obtaining large samples for reliable comparisons is challenging. Objective: This study integrates signal processing, harmonization, and statistical techniques to enhance sample size and improve AD risk classification reliability. Methods: We used advanced EEG preprocessing, feature extraction, harmonization, and propensity score matching (PSM) to balance healthy non-carriers (HC) and asymptomatic E280A mutation carriers (ACr). Data from four databases were harmonized to adjust site effects while preserving covariates like age and sex. PSM ratios (2:1, 5:1, 10:1) were applied to assess sample size impact on model performance. The final dataset underwent machine learning analysis with decision trees and cross-validation for robust results. Results: Balancing sample sizes via PSM significantly improved classification accuracy, ranging from 0.92 to 0.96 across ratios. This approach enabled precise risk identification even with limited samples. Conclusion: Integrating data processing, harmonization, and balancing techniques improves AD risk classification accuracy, offering potential for other neurodegenerative diseases.
Related papers
- Improving Bias Correction Standards by Quantifying its Effects on Treatment Outcomes [54.18828236350544]
Propensity score matching (PSM) addresses selection biases by selecting comparable populations for analysis.
Different matching methods can produce significantly different Average Treatment Effects (ATE) for the same task, even when meeting all validation criteria.
To address this issue, we introduce a novel metric, A2A, to reduce the number of valid matches.
arXiv Detail & Related papers (2024-07-20T12:42:24Z) - AXIAL: Attention-based eXplainability for Interpretable Alzheimer's Localized Diagnosis using 2D CNNs on 3D MRI brain scans [43.06293430764841]
This study presents an innovative method for Alzheimer's disease diagnosis using 3D MRI designed to enhance the explainability of model decisions.
Our approach adopts a soft attention mechanism, enabling 2D CNNs to extract volumetric representations.
With voxel-level precision, our method identified which specific areas are being paid attention to, identifying these predominant brain regions.
arXiv Detail & Related papers (2024-07-02T16:44:00Z) - Using Pre-training and Interaction Modeling for ancestry-specific disease prediction in UK Biobank [69.90493129893112]
Recent genome-wide association studies (GWAS) have uncovered the genetic basis of complex traits, but show an under-representation of non-European descent individuals.
Here, we assess whether we can improve disease prediction across diverse ancestries using multiomic data.
arXiv Detail & Related papers (2024-04-26T16:39:50Z) - Undersampling and Cumulative Class Re-decision Methods to Improve
Detection of Agitation in People with Dementia [16.949993123698345]
Agitation is one of the most prevalent symptoms in people with dementia (PwD)
In a previous study, we collected multimodal wearable sensor data from 17 participants for 600 days and developed machine learning models for detecting agitation in one-minute windows.
In this paper, we first implemented different undersampling methods to eliminate the imbalance problem, and came to the conclusion that only 20% of normal behaviour data were adequate to train a competitive agitation detection model.
arXiv Detail & Related papers (2023-02-07T03:14:00Z) - Bootstrapping Your Own Positive Sample: Contrastive Learning With
Electronic Health Record Data [62.29031007761901]
This paper proposes a novel contrastive regularized clinical classification model.
We introduce two unique positive sampling strategies specifically tailored for EHR data.
Our framework yields highly competitive experimental results in predicting the mortality risk on real-world COVID-19 EHR data.
arXiv Detail & Related papers (2021-04-07T06:02:04Z) - Increasing the efficiency of randomized trial estimates via linear
adjustment for a prognostic score [59.75318183140857]
Estimating causal effects from randomized experiments is central to clinical research.
Most methods for historical borrowing achieve reductions in variance by sacrificing strict type-I error rate control.
arXiv Detail & Related papers (2020-12-17T21:10:10Z) - UNITE: Uncertainty-based Health Risk Prediction Leveraging Multi-sourced
Data [81.00385374948125]
We present UNcertaInTy-based hEalth risk prediction (UNITE) model.
UNITE provides accurate disease risk prediction and uncertainty estimation leveraging multi-sourced health data.
We evaluate UNITE on real-world disease risk prediction tasks: nonalcoholic fatty liver disease (NASH) and Alzheimer's disease (AD)
UNITE achieves up to 0.841 in F1 score for AD detection, up to 0.609 in PR-AUC for NASH detection, and outperforms various state-of-the-art baselines by up to $19%$ over the best baseline.
arXiv Detail & Related papers (2020-10-22T02:28:11Z) - Predictive Modeling of ICU Healthcare-Associated Infections from
Imbalanced Data. Using Ensembles and a Clustering-Based Undersampling
Approach [55.41644538483948]
This work is focused on both the identification of risk factors and the prediction of healthcare-associated infections in intensive-care units.
The aim is to support decision making addressed at reducing the incidence rate of infections.
arXiv Detail & Related papers (2020-05-07T16:13:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.