Mismatched estimation of non-symmetric rank-one matrices corrupted by
structured noise
- URL: http://arxiv.org/abs/2302.03306v2
- Date: Wed, 8 Feb 2023 15:34:46 GMT
- Title: Mismatched estimation of non-symmetric rank-one matrices corrupted by
structured noise
- Authors: Teng Fu, YuHao Liu, Jean Barbier, Marco Mondelli, ShanSuo Liang,
TianQi Hou
- Abstract summary: We study the performance of a Bayesian statistician who estimates a rank-one signal corrupted by non-symmetric rotationally invariant noise with a generic distribution of singular values.
We derive the exact analytic expression for the error of the mismatched Bayes estimator and also provide the analysis of an approximate message passing (AMP) algorithm.
- Score: 21.447998004700384
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study the performance of a Bayesian statistician who estimates a rank-one
signal corrupted by non-symmetric rotationally invariant noise with a generic
distribution of singular values. As the signal-to-noise ratio and the noise
structure are unknown, a Gaussian setup is incorrectly assumed. We derive the
exact analytic expression for the error of the mismatched Bayes estimator and
also provide the analysis of an approximate message passing (AMP) algorithm.
The first result exploits the asymptotic behavior of spherical integrals for
rectangular matrices and of low-rank matrix perturbations; the second one
relies on the design and analysis of an auxiliary AMP. The numerical
experiments show that there is a performance gap between the AMP and Bayes
estimators, which is due to the incorrect estimation of the signal norm.
Related papers
- Fundamental limits of Non-Linear Low-Rank Matrix Estimation [18.455890316339595]
Bayes-optimal performances are characterized by an equivalent Gaussian model with an effective prior.
We show that to reconstruct the signal accurately, one requires a signal-to-noise ratio growing as $Nfrac 12 (1-1/k_F)$, where $k_F$ is the first non-zero Fisher information coefficient of the function.
arXiv Detail & Related papers (2024-03-07T05:26:52Z) - Robust Non-parametric Knowledge-based Diffusion Least Mean Squares over
Adaptive Networks [12.266804067030455]
The proposed algorithm leads to a robust estimation of an unknown parameter vector in a group of cooperative estimators.
Results show the robustness of the proposed algorithm in the presence of different noise types.
arXiv Detail & Related papers (2023-12-03T06:18:59Z) - Intrinsic Bayesian Cramér-Rao Bound with an Application to Covariance Matrix Estimation [49.67011673289242]
This paper presents a new performance bound for estimation problems where the parameter to estimate lies in a smooth manifold.
It induces a geometry for the parameter manifold, as well as an intrinsic notion of the estimation error measure.
arXiv Detail & Related papers (2023-11-08T15:17:13Z) - Optimal Algorithms for the Inhomogeneous Spiked Wigner Model [89.1371983413931]
We derive an approximate message-passing algorithm (AMP) for the inhomogeneous problem.
We identify in particular the existence of a statistical-to-computational gap where known algorithms require a signal-to-noise ratio bigger than the information-theoretic threshold to perform better than random.
arXiv Detail & Related papers (2023-02-13T19:57:17Z) - Detection problems in the spiked matrix models [15.125686694430573]
We first show that the principal component analysis can be improved by entrywise pre-transforming the data matrix if the noise is non-Gaussian.
We also introduce an algorithm that estimates the rank of the signal when it is not known a priori.
arXiv Detail & Related papers (2023-01-12T23:46:41Z) - The price of ignorance: how much does it cost to forget noise structure
in low-rank matrix estimation? [21.3083877172595]
We consider the problem of estimating a rank-1 signal corrupted by structured rotationally invariant noise.
We make a step towards understanding the effect of the strong source of mismatch which is the noise statistics.
We show that this performance gap is due to an incorrect estimation of the signal norm.
arXiv Detail & Related papers (2022-05-20T07:54:21Z) - Spectral clustering under degree heterogeneity: a case for the random
walk Laplacian [83.79286663107845]
This paper shows that graph spectral embedding using the random walk Laplacian produces vector representations which are completely corrected for node degree.
In the special case of a degree-corrected block model, the embedding concentrates about K distinct points, representing communities.
arXiv Detail & Related papers (2021-05-03T16:36:27Z) - Asymptotic Analysis of an Ensemble of Randomly Projected Linear
Discriminants [94.46276668068327]
In [1], an ensemble of randomly projected linear discriminants is used to classify datasets.
We develop a consistent estimator of the misclassification probability as an alternative to the computationally-costly cross-validation estimator.
We also demonstrate the use of our estimator for tuning the projection dimension on both real and synthetic data.
arXiv Detail & Related papers (2020-04-17T12:47:04Z) - Semiparametric Nonlinear Bipartite Graph Representation Learning with
Provable Guarantees [106.91654068632882]
We consider the bipartite graph and formalize its representation learning problem as a statistical estimation problem of parameters in a semiparametric exponential family distribution.
We show that the proposed objective is strongly convex in a neighborhood around the ground truth, so that a gradient descent-based method achieves linear convergence rate.
Our estimator is robust to any model misspecification within the exponential family, which is validated in extensive experiments.
arXiv Detail & Related papers (2020-03-02T16:40:36Z) - Estimating Gradients for Discrete Random Variables by Sampling without
Replacement [93.09326095997336]
We derive an unbiased estimator for expectations over discrete random variables based on sampling without replacement.
We show that our estimator can be derived as the Rao-Blackwellization of three different estimators.
arXiv Detail & Related papers (2020-02-14T14:15:18Z) - Weak Detection in the Spiked Wigner Model with General Rank [13.45821655503426]
We study the statistical decision process of detecting the signal from a signal+noise' type matrix model with an additive Wigner noise.
We propose a hypothesis test based on the linear spectral statistics of the data matrix, which does not depend on the distribution of the signal or the noise.
arXiv Detail & Related papers (2020-01-16T06:40:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.