論文の概要: PAMI: partition input and aggregate outputs for model interpretation
- arxiv url: http://arxiv.org/abs/2302.03318v2
- Date: Wed, 8 Feb 2023 15:29:12 GMT
- ステータス: 処理完了
- システム内更新日: 2023-02-09 12:11:58.397725
- Title: PAMI: partition input and aggregate outputs for model interpretation
- Title(参考訳): PAMI: モデル解釈のための分割入力と集約出力
- Authors: Wei Shi, Wentao Zhang, Weishi Zheng, Ruixuan Wang
- Abstract要約: 本研究では、深層学習モデルが局所的な特徴を集約してモデル予測を行うという観察に基づいて、PAMIと呼ばれるシンプルで効果的な可視化フレームワークを提案する。
基本的な考え方は、入力の大多数を隠蔽し、元のモデル予測に対する保存された入力部の相対的な寄与として対応するモデル出力を使用することである。
複数のタスクに対する大規模な実験により,提案手法は,クラス固有の入力領域をより正確に見つけるために,既存の可視化手法よりも優れていることを確認した。
- 参考スコア(独自算出の注目度): 69.42924964776766
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: There is an increasing demand for interpretation of model predictions
especially in high-risk applications. Various visualization approaches have
been proposed to estimate the part of input which is relevant to a specific
model prediction. However, most approaches require model structure and
parameter details in order to obtain the visualization results, and in general
much effort is required to adapt each approach to multiple types of tasks
particularly when model backbone and input format change over tasks. In this
study, a simple yet effective visualization framework called PAMI is proposed
based on the observation that deep learning models often aggregate features
from local regions for model predictions. The basic idea is to mask majority of
the input and use the corresponding model output as the relative contribution
of the preserved input part to the original model prediction. For each input,
since only a set of model outputs are collected and aggregated, PAMI does not
require any model detail and can be applied to various prediction tasks with
different model backbones and input formats. Extensive experiments on multiple
tasks confirm the proposed method performs better than existing visualization
approaches in more precisely finding class-specific input regions, and when
applied to different model backbones and input formats. The source code will be
released publicly.
- Abstract(参考訳): 特にリスクの高いアプリケーションでは,モデル予測の解釈に対する需要が高まっている。
特定のモデル予測に関連する入力の一部を推定するために,様々な可視化手法が提案されている。
しかし、ほとんどのアプローチは視覚化結果を得るためにモデル構造とパラメータの詳細を必要とし、一般に、モデルバックボーンと入力形式がタスクによって変化する場合、各アプローチを複数のタスクに適応させるのに多くの努力が必要である。
本研究では、深層学習モデルが局所的な特徴を集約してモデル予測を行うという観察に基づいて、PAMIと呼ばれる単純な視覚化フレームワークを提案する。
基本的な考え方は、入力の大部分をマスキングし、元のモデル予測に対する保存された入力部の相対的貢献として対応するモデル出力を使用することである。
各入力に対して、モデル出力の集合のみが収集され集約されるため、PAMIはモデルの詳細を一切必要とせず、異なるモデルバックボーンと入力形式で様々な予測タスクに適用できる。
複数のタスクに対する大規模な実験により,提案手法はクラス固有の入力領域をより正確に見つけることができ,異なるモデルバックボーンや入力形式に適用できる。
ソースコードは公開される予定だ。
関連論文リスト
- Has Your Pretrained Model Improved? A Multi-head Posterior Based
Approach [25.927323251675386]
我々は、世界的知識の源として各エンティティに関連するメタ機能を活用し、モデルからエンティティ表現を採用する。
本稿では,これらの表現とメタ機能との整合性を,事前学習モデルの評価指標として用いることを提案する。
提案手法の有効性は,関係データセットを用いたモデル,大規模言語モデル,画像モデルなど,様々な領域で実証されている。
論文 参考訳(メタデータ) (2024-01-02T17:08:26Z) - OMNIINPUT: A Model-centric Evaluation Framework through Output
Distribution [31.00645110294068]
我々は,AI/MLモデルの予測品質を,可能なすべての入力に対して評価するモデル中心評価フレームワークOmniInputを提案する。
提案手法では, 学習モデルの入力と出力分布を求めるために, 効率的なサンプリング器を用いる。
実験により,OmniInputはモデル間のよりきめ細かい比較を可能にした。
論文 参考訳(メタデータ) (2023-12-06T04:53:12Z) - Predictable MDP Abstraction for Unsupervised Model-Based RL [93.91375268580806]
予測可能なMDP抽象化(PMA)を提案する。
元のMDPで予測モデルを訓練する代わりに、学習されたアクション空間を持つ変換MDPでモデルを訓練する。
我々はPMAを理論的に解析し、PMAが以前の教師なしモデルベースRLアプローチよりも大幅に改善することを示す。
論文 参考訳(メタデータ) (2023-02-08T07:37:51Z) - Dataless Knowledge Fusion by Merging Weights of Language Models [51.8162883997512]
微調整された事前学習言語モデルは、下流のNLPモデルを構築するための主要なパラダイムとなっている。
これは、より優れた単一モデルを生み出すために、個々のモデル間で知識を融合させる障壁を生み出します。
パラメータ空間のモデルをマージするデータレス知識融合法を提案する。
論文 参考訳(メタデータ) (2022-12-19T20:46:43Z) - Post-Selection Confidence Bounds for Prediction Performance [2.28438857884398]
機械学習では、潜在的に多くの競合モデルから有望なモデルを選択し、その一般化性能を評価することが重要な課題である。
本稿では,評価セットの予測性能に基づいて選択された複数のモデルに対して,有効な低信頼境界を求めるアルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-10-24T13:28:43Z) - Model ensemble instead of prompt fusion: a sample-specific knowledge
transfer method for few-shot prompt tuning [85.55727213502402]
我々は、ソースタスクのソフトプロンプトから知識を伝達することで、プロンプトチューニングにおける数ショットのパフォーマンスを改善することに集中する。
我々はソースモデル(SESoM)のサンプル固有アンサンブルを提案する。
SESoMは、ソースモデルが出力されるときに、ターゲットの各サンプルに対するソースモデルのコントリビューションを個別に調整することを学ぶ。
論文 参考訳(メタデータ) (2022-10-23T01:33:16Z) - Attentional Prototype Inference for Few-Shot Segmentation [128.45753577331422]
数発のセグメンテーションのための確率的潜在変数フレームワークである注意型プロトタイプ推論(API)を提案する。
我々は各オブジェクトカテゴリのプロトタイプを表現するためにグローバル潜在変数を定義し、確率分布としてモデル化する。
我々は4つのベンチマークで広範な実験を行い、提案手法は最先端のプロトタイプベースの手法よりも、少なくとも競争力があり、しばしば優れた性能が得られる。
論文 参考訳(メタデータ) (2021-05-14T06:58:44Z) - Gaussian Function On Response Surface Estimation [12.35564140065216]
メタモデリング手法によるブラックボックス機械学習モデルの解釈(機能とサンプル)のための新しいフレームワークを提案する。
メタモデルは、興味のある領域のデータサンプルでコンピュータ実験を実行することによって、訓練された複雑なモデルによって生成されたデータから推定することができる。
論文 参考訳(メタデータ) (2021-01-04T04:47:00Z) - Predictive process mining by network of classifiers and clusterers: the
PEDF model [0.0]
PEDFモデルは、イベントのシーケンス、期間、追加機能に基づいて学習する。
このモデルはログファイルから2つのデータセットを抽出する必要がある。
論文 参考訳(メタデータ) (2020-11-22T23:27:19Z) - What do we expect from Multiple-choice QA Systems? [70.86513724662302]
複数のMultiple Choice Question Answering(MCQA)データセット上で,トップパフォーマンスモデルを検討する。
このようなモデルから得られる可能性のある一連の期待値に対して、モデル入力のゼロ情報摂動を用いて評価する。
論文 参考訳(メタデータ) (2020-11-20T21:27:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。