Argon milling induced decoherence mechanisms in superconducting quantum
circuits
- URL: http://arxiv.org/abs/2302.03518v1
- Date: Tue, 7 Feb 2023 15:06:38 GMT
- Title: Argon milling induced decoherence mechanisms in superconducting quantum
circuits
- Authors: J. Van Damme, Ts. Ivanov, P. Favia, T. Conard, J. Verjauw, R. Acharya,
D. Perez Lozano, B. Raes, J. Van de Vondel, A. M. Vadiraj, M. Mongillo, D.
Wan, J. De Boeck, A. Poto\v{c}nik, K. De Greve
- Abstract summary: We investigate the process of argon milling, a potentially coherence limiting step, using niobium and aluminum superconducting resonators as a proxy for surface-limited behavior of qubits.
We find that niobium microwave resonators exhibit an order of magnitude decrease in quality-factors after surface argon milling, while aluminum resonators are resilient to the same process.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The fabrication of superconducting circuits requires multiple deposition,
etch and cleaning steps, each possibly introducing material property changes
and microscopic defects. In this work, we specifically investigate the process
of argon milling, a potentially coherence limiting step, using niobium and
aluminum superconducting resonators as a proxy for surface-limited behavior of
qubits. We find that niobium microwave resonators exhibit an order of magnitude
decrease in quality-factors after surface argon milling, while aluminum
resonators are resilient to the same process. Extensive analysis of the niobium
surface shows no change in the suboxide composition due to argon milling, while
two-tone spectroscopy measurements reveal an increase in two-level system
electrical dipole moments, indicating a structurally altered niobium oxide
hosting larger two-level system defects. However, a short dry etch can fully
recover the argon milling induced losses on niobium, offering a potential route
towards state-of-the-art overlap Josephson junction qubits with niobium
circuitry.
Related papers
- Crystallinity in Niobium oxides: A pathway to mitigate Two-Level System Defects in Niobium 3D Resonator for quantum applications [0.0]
Two-level-system (TLS) defects are a major source of decoherence in superconducting quantum circuits.
We demonstrate the reduction of two-level system losses in three-dimensional superconducting radio frequency (SRF) niobium resonators by a 10-hour high vacuum heat treatment at 650degC.
arXiv Detail & Related papers (2024-10-09T12:02:32Z) - Site-Controlled Purcell-Induced Bright Single Photon Emitters in Hexagonal Boron Nitride [62.170141783047974]
Single photon emitters hosted in hexagonal boron nitride (hBN) are essential building blocks for quantum photonic technologies that operate at room temperature.
We experimentally demonstrate large-area arrays of plasmonic nanoresonators for Purcell-induced site-controlled SPEs.
Our results offer arrays of bright, heterogeneously integrated quantum light sources, paving the way for robust and scalable quantum information systems.
arXiv Detail & Related papers (2024-05-03T23:02:30Z) - Alternating Bias Assisted Annealing of Amorphous Oxide Tunnel Junctions [3.900324344668458]
We demonstrate a technique for tuning the electrical properties of fabricated thermally oxidized amorphous aluminum-oxide tunnel junctions.
The rate of resistance change is shown to be strongly temperature-dependent, and is independent of junction size in the sub-micron regime.
arXiv Detail & Related papers (2024-01-15T01:42:32Z) - Characterizing losses in InAs two-dimensional electron gas-based gatemon
qubits [4.597795956436758]
We present continuous-wave and time-domain characterization of gatemon qubits and coplanar waveguide resonators based on an InAs two-dimensional electron gas.
We show that the qubit undergoes a vacuum Rabi splitting with a readout cavity and we drive coherent Rabi oscillations between the qubit ground and first excited states.
We detail the loss mechanisms present in these materials through a systematic study of the quality factors of coplanar waveguide resonators.
arXiv Detail & Related papers (2023-09-29T14:23:28Z) - Microwave loss characterization using multi-mode superconducting
resonators [0.0]
We introduce a method to measure the microwave losses of materials and interfaces with a single multi-mode superconducting resonator.
We present two types of multi-mode superconducting resonators for the study of bulk superconductors.
arXiv Detail & Related papers (2023-05-03T03:10:41Z) - Performance of high impedance resonators in dirty dielectric
environments [0.0]
Internal quality factors of high-impedance resonators exceed $103$ in all investigated oxide configurations.
These experiments pave the way for large-scale, spin-based quantum computers.
arXiv Detail & Related papers (2023-02-13T12:06:56Z) - Review on coherent quantum emitters in hexagonal boron nitride [91.3755431537592]
I discuss the state-of-the-art of defect centers in hexagonal boron nitride with a focus on optically coherent defect centers.
The spectral transition linewidth remains unusually narrow even at room temperature.
The field is put into a broad perspective with impact on quantum technology such as quantum optics, quantum photonics as well as spin optomechanics.
arXiv Detail & Related papers (2022-01-31T12:49:43Z) - Ternary Metal Oxide Substrates for Superconducting Circuits [65.60958948226929]
Substrate material imperfections and surface losses are one of the major factors limiting superconducting quantum circuitry from reaching the scale and complexity required to build a practicable quantum computer.
Here, we examine two ternary metal oxide materials, spinel (MgAl2O4) and lanthanum aluminate (LaAlO3), with a focus on surface and interface characterization and preparation.
arXiv Detail & Related papers (2022-01-17T06:10:15Z) - TOF-SIMS Analysis of Decoherence Sources in Nb Superconducting
Resonators [48.7576911714538]
Superconducting qubits have emerged as a potentially foundational platform technology.
Material quality and interfacial structures continue to curb device performance.
Two-level system defects in the thin film and adjacent regions introduce noise and dissipate electromagnetic energy.
arXiv Detail & Related papers (2021-08-30T22:22:47Z) - Probing defect densities at the edges and inside Josephson junctions of
superconducting qubits [58.720142291102135]
Tunneling defects in disordered materials form spurious two-level systems.
For superconducting qubits, defects in tunnel barriers of submicrometer-sized Josephson junctions couple strongest to the qubit.
We investigate whether defects appear predominantly at the edges or deep within the amorphous tunnel barrier of a junction.
arXiv Detail & Related papers (2021-08-14T15:01:35Z) - In-situ bandaged Josephson junctions for superconducting quantum
processors [101.18253437732933]
Shadow evaporation is commonly used to micro-fabricate the key element of superconducting qubits - the Josephson junction.
Here, we present an improved shadow evaporation technique allowing one to fabricate sub-micrometer-sized Josephson junctions together with bandage layers in a single lithography step.
arXiv Detail & Related papers (2021-01-05T11:08:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.