Adaptive Aggregation for Safety-Critical Control
- URL: http://arxiv.org/abs/2302.03586v1
- Date: Tue, 7 Feb 2023 16:53:33 GMT
- Title: Adaptive Aggregation for Safety-Critical Control
- Authors: Huiliang Zhang, Di Wu and Benoit Boulet
- Abstract summary: We propose an adaptive aggregation framework for safety-critical control.
Our algorithm can achieve fewer safety violations while showing better data efficiency compared with several baselines.
- Score: 3.1692938090731584
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Safety has been recognized as the central obstacle to preventing the use of
reinforcement learning (RL) for real-world applications. Different methods have
been developed to deal with safety concerns in RL. However, learning reliable
RL-based solutions usually require a large number of interactions with the
environment. Likewise, how to improve the learning efficiency, specifically,
how to utilize transfer learning for safe reinforcement learning, has not been
well studied. In this work, we propose an adaptive aggregation framework for
safety-critical control. Our method comprises two key techniques: 1) we learn
to transfer the safety knowledge by aggregating the multiple source tasks and a
target task through the attention network; 2) we separate the goal of improving
task performance and reducing constraint violations by utilizing a safeguard.
Experiment results demonstrate that our algorithm can achieve fewer safety
violations while showing better data efficiency compared with several
baselines.
Related papers
- Safety through Permissibility: Shield Construction for Fast and Safe Reinforcement Learning [57.84059344739159]
"Shielding" is a popular technique to enforce safety inReinforcement Learning (RL)
We propose a new permissibility-based framework to deal with safety and shield construction.
arXiv Detail & Related papers (2024-05-29T18:00:21Z) - Towards Safe Load Balancing based on Control Barrier Functions and Deep
Reinforcement Learning [0.691367883100748]
We propose a safe learning-based load balancing algorithm for Software Defined-Wide Area Network (SD-WAN)
It is empowered by Deep Reinforcement Learning (DRL) combined with a Control Barrier Function (CBF)
We show that our approach delivers near-optimal Quality-of-Service (QoS) in terms of end-to-end delay while respecting safety requirements related to link capacity constraints.
arXiv Detail & Related papers (2024-01-10T19:43:12Z) - Approximate Model-Based Shielding for Safe Reinforcement Learning [83.55437924143615]
We propose a principled look-ahead shielding algorithm for verifying the performance of learned RL policies.
Our algorithm differs from other shielding approaches in that it does not require prior knowledge of the safety-relevant dynamics of the system.
We demonstrate superior performance to other safety-aware approaches on a set of Atari games with state-dependent safety-labels.
arXiv Detail & Related papers (2023-07-27T15:19:45Z) - Safe and Sample-efficient Reinforcement Learning for Clustered Dynamic
Environments [4.111899441919165]
This study proposes a safe and sample-efficient reinforcement learning (RL) framework to address two major challenges.
We use the safe set algorithm (SSA) to monitor and modify the nominal controls, and evaluate SSA+RL in a clustered dynamic environment.
Our framework can achieve better safety performance compare to other safe RL methods during training and solve the task with substantially fewer episodes.
arXiv Detail & Related papers (2023-03-24T20:29:17Z) - Safety Correction from Baseline: Towards the Risk-aware Policy in
Robotics via Dual-agent Reinforcement Learning [64.11013095004786]
We propose a dual-agent safe reinforcement learning strategy consisting of a baseline and a safe agent.
Such a decoupled framework enables high flexibility, data efficiency and risk-awareness for RL-based control.
The proposed method outperforms the state-of-the-art safe RL algorithms on difficult robot locomotion and manipulation tasks.
arXiv Detail & Related papers (2022-12-14T03:11:25Z) - Evaluating Model-free Reinforcement Learning toward Safety-critical
Tasks [70.76757529955577]
This paper revisits prior work in this scope from the perspective of state-wise safe RL.
We propose Unrolling Safety Layer (USL), a joint method that combines safety optimization and safety projection.
To facilitate further research in this area, we reproduce related algorithms in a unified pipeline and incorporate them into SafeRL-Kit.
arXiv Detail & Related papers (2022-12-12T06:30:17Z) - Log Barriers for Safe Black-box Optimization with Application to Safe
Reinforcement Learning [72.97229770329214]
We introduce a general approach for seeking high dimensional non-linear optimization problems in which maintaining safety during learning is crucial.
Our approach called LBSGD is based on applying a logarithmic barrier approximation with a carefully chosen step size.
We demonstrate the effectiveness of our approach on minimizing violation in policy tasks in safe reinforcement learning.
arXiv Detail & Related papers (2022-07-21T11:14:47Z) - Provably Safe Reinforcement Learning: Conceptual Analysis, Survey, and
Benchmarking [12.719948223824483]
reinforcement learning (RL) algorithms are crucial to unlock their potential for many real-world tasks.
However, vanilla RL and most safe RL approaches do not guarantee safety.
We introduce a categorization of existing provably safe RL methods, present the conceptual foundations for both continuous and discrete action spaces, and empirically benchmark existing methods.
We provide practical guidance on selecting provably safe RL approaches depending on the safety specification, RL algorithm, and type of action space.
arXiv Detail & Related papers (2022-05-13T16:34:36Z) - Safe Model-Based Reinforcement Learning Using Robust Control Barrier
Functions [43.713259595810854]
An increasingly common approach to address safety involves the addition of a safety layer that projects the RL actions onto a safe set of actions.
In this paper, we frame safety as a differentiable robust-control-barrier-function layer in a model-based RL framework.
arXiv Detail & Related papers (2021-10-11T17:00:45Z) - Improving Safety in Deep Reinforcement Learning using Unsupervised
Action Planning [4.2955354157580325]
One of the key challenges to deep reinforcement learning (deep RL) is to ensure safety at both training and testing phases.
We propose a novel technique of unsupervised action planning to improve the safety of on-policy reinforcement learning algorithms.
Our results show that the proposed safety RL algorithm can achieve higher rewards compared with multiple baselines in both discrete and continuous control problems.
arXiv Detail & Related papers (2021-09-29T10:26:29Z) - Learning to be Safe: Deep RL with a Safety Critic [72.00568333130391]
A natural first approach toward safe RL is to manually specify constraints on the policy's behavior.
We propose to learn how to be safe in one set of tasks and environments, and then use that learned intuition to constrain future behaviors.
arXiv Detail & Related papers (2020-10-27T20:53:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.