Approximate Model-Based Shielding for Safe Reinforcement Learning
- URL: http://arxiv.org/abs/2308.00707v1
- Date: Thu, 27 Jul 2023 15:19:45 GMT
- Title: Approximate Model-Based Shielding for Safe Reinforcement Learning
- Authors: Alexander W. Goodall, Francesco Belardinelli
- Abstract summary: We propose a principled look-ahead shielding algorithm for verifying the performance of learned RL policies.
Our algorithm differs from other shielding approaches in that it does not require prior knowledge of the safety-relevant dynamics of the system.
We demonstrate superior performance to other safety-aware approaches on a set of Atari games with state-dependent safety-labels.
- Score: 83.55437924143615
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Reinforcement learning (RL) has shown great potential for solving complex
tasks in a variety of domains. However, applying RL to safety-critical systems
in the real-world is not easy as many algorithms are sample-inefficient and
maximising the standard RL objective comes with no guarantees on worst-case
performance. In this paper we propose approximate model-based shielding (AMBS),
a principled look-ahead shielding algorithm for verifying the performance of
learned RL policies w.r.t. a set of given safety constraints. Our algorithm
differs from other shielding approaches in that it does not require prior
knowledge of the safety-relevant dynamics of the system. We provide a strong
theoretical justification for AMBS and demonstrate superior performance to
other safety-aware approaches on a set of Atari games with state-dependent
safety-labels.
Related papers
- Approximate Shielding of Atari Agents for Safe Exploration [83.55437924143615]
We propose a principled algorithm for safe exploration based on the concept of shielding.
We present preliminary results that show our approximate shielding algorithm effectively reduces the rate of safety violations.
arXiv Detail & Related papers (2023-04-21T16:19:54Z) - A Multiplicative Value Function for Safe and Efficient Reinforcement
Learning [131.96501469927733]
We propose a safe model-free RL algorithm with a novel multiplicative value function consisting of a safety critic and a reward critic.
The safety critic predicts the probability of constraint violation and discounts the reward critic that only estimates constraint-free returns.
We evaluate our method in four safety-focused environments, including classical RL benchmarks augmented with safety constraints and robot navigation tasks with images and raw Lidar scans as observations.
arXiv Detail & Related papers (2023-03-07T18:29:15Z) - Evaluating Model-free Reinforcement Learning toward Safety-critical
Tasks [70.76757529955577]
This paper revisits prior work in this scope from the perspective of state-wise safe RL.
We propose Unrolling Safety Layer (USL), a joint method that combines safety optimization and safety projection.
To facilitate further research in this area, we reproduce related algorithms in a unified pipeline and incorporate them into SafeRL-Kit.
arXiv Detail & Related papers (2022-12-12T06:30:17Z) - Provable Safe Reinforcement Learning with Binary Feedback [62.257383728544006]
We consider the problem of provable safe RL when given access to an offline oracle providing binary feedback on the safety of state, action pairs.
We provide a novel meta algorithm, SABRE, which can be applied to any MDP setting given access to a blackbox PAC RL algorithm for that setting.
arXiv Detail & Related papers (2022-10-26T05:37:51Z) - Safe Model-Based Reinforcement Learning with an Uncertainty-Aware
Reachability Certificate [6.581362609037603]
We build a safe reinforcement learning framework to resolve constraints required by the DRC and its corresponding shield policy.
We also devise a line search method to maintain safety and reach higher returns simultaneously while leveraging the shield policy.
arXiv Detail & Related papers (2022-10-14T06:16:53Z) - Log Barriers for Safe Black-box Optimization with Application to Safe
Reinforcement Learning [72.97229770329214]
We introduce a general approach for seeking high dimensional non-linear optimization problems in which maintaining safety during learning is crucial.
Our approach called LBSGD is based on applying a logarithmic barrier approximation with a carefully chosen step size.
We demonstrate the effectiveness of our approach on minimizing violation in policy tasks in safe reinforcement learning.
arXiv Detail & Related papers (2022-07-21T11:14:47Z) - SafeRL-Kit: Evaluating Efficient Reinforcement Learning Methods for Safe
Autonomous Driving [12.925039760573092]
We release SafeRL-Kit to benchmark safe RL methods for autonomous driving tasks.
SafeRL-Kit contains several latest algorithms specific to zero-constraint-violation tasks, including Safety Layer, Recovery RL, off-policy Lagrangian method, and Feasible Actor-Critic.
We conduct a comparative evaluation of the above algorithms in SafeRL-Kit and shed light on their efficacy for safe autonomous driving.
arXiv Detail & Related papers (2022-06-17T03:23:51Z) - Provably Safe Reinforcement Learning: Conceptual Analysis, Survey, and
Benchmarking [12.719948223824483]
reinforcement learning (RL) algorithms are crucial to unlock their potential for many real-world tasks.
However, vanilla RL and most safe RL approaches do not guarantee safety.
We introduce a categorization of existing provably safe RL methods, present the conceptual foundations for both continuous and discrete action spaces, and empirically benchmark existing methods.
We provide practical guidance on selecting provably safe RL approaches depending on the safety specification, RL algorithm, and type of action space.
arXiv Detail & Related papers (2022-05-13T16:34:36Z) - Safe Reinforcement Learning via Shielding for POMDPs [29.058332307331785]
Reinforcement learning (RL) in safety-critical environments requires an agent to avoid decisions with catastrophic consequences.
We propose and thoroughly evaluate a tight integration of formally-verified shields for POMDPs with state-of-the-art deep RL algorithms.
We empirically demonstrate that an RL agent using a shield, beyond being safe, converges to higher values of expected reward.
arXiv Detail & Related papers (2022-04-02T03:51:55Z) - Safe Distributional Reinforcement Learning [19.607668635077495]
Safety in reinforcement learning (RL) is a key property in both training and execution in many domains such as autonomous driving or finance.
We formalize it with a constrained RL formulation in the distributional RL setting.
We empirically validate our propositions on artificial and real domains against appropriate state-of-the-art safe RL algorithms.
arXiv Detail & Related papers (2021-02-26T13:03:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.