How Reliable is Your Regression Model's Uncertainty Under Real-World
Distribution Shifts?
- URL: http://arxiv.org/abs/2302.03679v2
- Date: Tue, 7 Nov 2023 09:21:32 GMT
- Title: How Reliable is Your Regression Model's Uncertainty Under Real-World
Distribution Shifts?
- Authors: Fredrik K. Gustafsson, Martin Danelljan, Thomas B. Sch\"on
- Abstract summary: We propose a benchmark of 8 image-based regression datasets with different types of challenging distribution shifts.
We find that while methods are well calibrated when there is no distribution shift, they all become highly overconfident on many of the benchmark datasets.
- Score: 46.05502630457458
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Many important computer vision applications are naturally formulated as
regression problems. Within medical imaging, accurate regression models have
the potential to automate various tasks, helping to lower costs and improve
patient outcomes. Such safety-critical deployment does however require reliable
estimation of model uncertainty, also under the wide variety of distribution
shifts that might be encountered in practice. Motivated by this, we set out to
investigate the reliability of regression uncertainty estimation methods under
various real-world distribution shifts. To that end, we propose an extensive
benchmark of 8 image-based regression datasets with different types of
challenging distribution shifts. We then employ our benchmark to evaluate many
of the most common uncertainty estimation methods, as well as two
state-of-the-art uncertainty scores from the task of out-of-distribution
detection. We find that while methods are well calibrated when there is no
distribution shift, they all become highly overconfident on many of the
benchmark datasets. This uncovers important limitations of current uncertainty
estimation methods, and the proposed benchmark therefore serves as a challenge
to the research community. We hope that our benchmark will spur more work on
how to develop truly reliable regression uncertainty estimation methods. Code
is available at https://github.com/fregu856/regression_uncertainty.
Related papers
- Beyond the Norms: Detecting Prediction Errors in Regression Models [26.178065248948773]
This paper tackles the challenge of detecting unreliable behavior in regression algorithms.
We introduce the notion of unreliability in regression, when the output of the regressor exceeds a specified discrepancy (or error)
We show empirical improvements in error detection for multiple regression tasks, consistently outperforming popular baseline approaches.
arXiv Detail & Related papers (2024-06-11T05:51:44Z) - Semi-Supervised Deep Regression with Uncertainty Consistency and
Variational Model Ensembling via Bayesian Neural Networks [31.67508478764597]
We propose a novel approach to semi-supervised regression, namely Uncertainty-Consistent Variational Model Ensembling (UCVME)
Our consistency loss significantly improves uncertainty estimates and allows higher quality pseudo-labels to be assigned greater importance under heteroscedastic regression.
Experiments show that our method outperforms state-of-the-art alternatives on different tasks and can be competitive with supervised methods that use full labels.
arXiv Detail & Related papers (2023-02-15T10:40:51Z) - Reliable Multimodal Trajectory Prediction via Error Aligned Uncertainty
Optimization [11.456242421204298]
In a well-calibrated model, uncertainty estimates should perfectly correlate with model error.
We propose a novel error aligned uncertainty optimization method and introduce a trainable loss function to guide the models to yield good quality uncertainty estimates aligning with the model error.
We demonstrate that our method improves average displacement error by 1.69% and 4.69%, and the uncertainty correlation with model error by 17.22% and 19.13% as quantified by Pearson correlation coefficient on two state-of-the-art baselines.
arXiv Detail & Related papers (2022-12-09T12:33:26Z) - Reliability-Aware Prediction via Uncertainty Learning for Person Image
Retrieval [51.83967175585896]
UAL aims at providing reliability-aware predictions by considering data uncertainty and model uncertainty simultaneously.
Data uncertainty captures the noise" inherent in the sample, while model uncertainty depicts the model's confidence in the sample's prediction.
arXiv Detail & Related papers (2022-10-24T17:53:20Z) - Recalibration of Aleatoric and Epistemic Regression Uncertainty in
Medical Imaging [2.126171264016785]
Well-calibrated uncertainty in regression allows robust rejection of unreliable predictions or detection of out-of-distribution samples.
$ sigma $ scaling is able to reliably recalibrate predictive uncertainty.
arXiv Detail & Related papers (2021-04-26T07:18:58Z) - Learning Probabilistic Ordinal Embeddings for Uncertainty-Aware
Regression [91.3373131262391]
Uncertainty is the only certainty there is.
Traditionally, the direct regression formulation is considered and the uncertainty is modeled by modifying the output space to a certain family of probabilistic distributions.
How to model the uncertainty within the present-day technologies for regression remains an open issue.
arXiv Detail & Related papers (2021-03-25T06:56:09Z) - Approaching Neural Network Uncertainty Realism [53.308409014122816]
Quantifying or at least upper-bounding uncertainties is vital for safety-critical systems such as autonomous vehicles.
We evaluate uncertainty realism -- a strict quality criterion -- with a Mahalanobis distance-based statistical test.
We adopt it to the automotive domain and show that it significantly improves uncertainty realism compared to a plain encoder-decoder model.
arXiv Detail & Related papers (2021-01-08T11:56:12Z) - Accurate and Robust Feature Importance Estimation under Distribution
Shifts [49.58991359544005]
PRoFILE is a novel feature importance estimation method.
We show significant improvements over state-of-the-art approaches, both in terms of fidelity and robustness.
arXiv Detail & Related papers (2020-09-30T05:29:01Z) - Unlabelled Data Improves Bayesian Uncertainty Calibration under
Covariate Shift [100.52588638477862]
We develop an approximate Bayesian inference scheme based on posterior regularisation.
We demonstrate the utility of our method in the context of transferring prognostic models of prostate cancer across globally diverse populations.
arXiv Detail & Related papers (2020-06-26T13:50:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.