Predictive Multiplicity in Survival Models: A Method for Quantifying Model Uncertainty in Predictive Maintenance Applications
- URL: http://arxiv.org/abs/2504.12156v1
- Date: Wed, 16 Apr 2025 15:04:00 GMT
- Title: Predictive Multiplicity in Survival Models: A Method for Quantifying Model Uncertainty in Predictive Maintenance Applications
- Authors: Mustafa Cavus,
- Abstract summary: We frame predictive multiplicity as a critical concern in survival-based models.<n>We introduce formal measures -- ambiguity, discrepancy, and obscurity -- to quantify it.<n>This is particularly relevant for downstream tasks such as maintenance scheduling.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In many applications, especially those involving prediction, models may yield near-optimal performance yet significantly disagree on individual-level outcomes. This phenomenon, known as predictive multiplicity, has been formally defined in binary, probabilistic, and multi-target classification, and undermines the reliability of predictive systems. However, its implications remain unexplored in the context of survival analysis, which involves estimating the time until a failure or similar event while properly handling censored data. We frame predictive multiplicity as a critical concern in survival-based models and introduce formal measures -- ambiguity, discrepancy, and obscurity -- to quantify it. This is particularly relevant for downstream tasks such as maintenance scheduling, where precise individual risk estimates are essential. Understanding and reporting predictive multiplicity helps build trust in models deployed in high-stakes environments. We apply our methodology to benchmark datasets from predictive maintenance, extending the notion of multiplicity to survival models. Our findings show that ambiguity steadily increases, reaching up to 40-45% of observations; discrepancy is lower but exhibits a similar trend; and obscurity remains mild and concentrated in a few models. These results demonstrate that multiple accurate survival models may yield conflicting estimations of failure risk and degradation progression for the same equipment. This highlights the need to explicitly measure and communicate predictive multiplicity to ensure reliable decision-making in process health management.
Related papers
- Rashomon perspective for measuring uncertainty in the survival predictive maintenance models [0.0]
The prediction of the Remaining Useful Life of aircraft engines is a critical area in high-reliability sectors such as aerospace and defense.<n>Traditional regression models struggle with censored data, which can lead to biased predictions.<n>Survival models, on the other hand, effectively handle censored data, improving predictive accuracy in maintenance processes.
arXiv Detail & Related papers (2025-02-16T13:36:56Z) - Estimating Epistemic and Aleatoric Uncertainty with a Single Model [5.871583927216653]
We introduce a new approach to ensembling, hyper-diffusion models (HyperDM)
HyperDM offers prediction accuracy on par with, and in some cases superior to, multi-model ensembles.
We validate our method on two distinct real-world tasks: x-ray computed tomography reconstruction and weather temperature forecasting.
arXiv Detail & Related papers (2024-02-05T19:39:52Z) - Quantification of Predictive Uncertainty via Inference-Time Sampling [57.749601811982096]
We propose a post-hoc sampling strategy for estimating predictive uncertainty accounting for data ambiguity.
The method can generate different plausible outputs for a given input and does not assume parametric forms of predictive distributions.
arXiv Detail & Related papers (2023-08-03T12:43:21Z) - Measuring and Modeling Uncertainty Degree for Monocular Depth Estimation [50.920911532133154]
The intrinsic ill-posedness and ordinal-sensitive nature of monocular depth estimation (MDE) models pose major challenges to the estimation of uncertainty degree.
We propose to model the uncertainty of MDE models from the perspective of the inherent probability distributions.
By simply introducing additional training regularization terms, our model, with surprisingly simple formations and without requiring extra modules or multiple inferences, can provide uncertainty estimations with state-of-the-art reliability.
arXiv Detail & Related papers (2023-07-19T12:11:15Z) - Toward Reliable Human Pose Forecasting with Uncertainty [51.628234388046195]
We develop an open-source library for human pose forecasting, including multiple models, supporting several datasets.
We devise two types of uncertainty in the problem to increase performance and convey better trust.
arXiv Detail & Related papers (2023-04-13T17:56:08Z) - How Reliable is Your Regression Model's Uncertainty Under Real-World
Distribution Shifts? [46.05502630457458]
We propose a benchmark of 8 image-based regression datasets with different types of challenging distribution shifts.
We find that while methods are well calibrated when there is no distribution shift, they all become highly overconfident on many of the benchmark datasets.
arXiv Detail & Related papers (2023-02-07T18:54:39Z) - Predictive Multiplicity in Probabilistic Classification [25.111463701666864]
We present a framework for measuring predictive multiplicity in probabilistic classification.
We demonstrate the incidence and prevalence of predictive multiplicity in real-world tasks.
Our results emphasize the need to report predictive multiplicity more widely.
arXiv Detail & Related papers (2022-06-02T16:25:29Z) - Trust but Verify: Assigning Prediction Credibility by Counterfactual
Constrained Learning [123.3472310767721]
Prediction credibility measures are fundamental in statistics and machine learning.
These measures should account for the wide variety of models used in practice.
The framework developed in this work expresses the credibility as a risk-fit trade-off.
arXiv Detail & Related papers (2020-11-24T19:52:38Z) - Accurate and Robust Feature Importance Estimation under Distribution
Shifts [49.58991359544005]
PRoFILE is a novel feature importance estimation method.
We show significant improvements over state-of-the-art approaches, both in terms of fidelity and robustness.
arXiv Detail & Related papers (2020-09-30T05:29:01Z) - Uncertainty Estimation in Cancer Survival Prediction [8.827764645115955]
Survival models are used in various fields, such as the development of cancer treatment protocols.
We propose a Bayesian framework for survival models that not only gives more accurate survival predictions but also quantifies the survival uncertainty better.
Our approach is a novel combination of variational inference for uncertainty estimation, neural multi-task logistic regression for estimating nonlinear and time-varying risk models, and an additional sparsity-inducing prior to work with high dimensional data.
arXiv Detail & Related papers (2020-03-19T05:08:01Z) - Ambiguity in Sequential Data: Predicting Uncertain Futures with
Recurrent Models [110.82452096672182]
We propose an extension of the Multiple Hypothesis Prediction (MHP) model to handle ambiguous predictions with sequential data.
We also introduce a novel metric for ambiguous problems, which is better suited to account for uncertainties.
arXiv Detail & Related papers (2020-03-10T09:15:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.