論文の概要: Quantum Electronics for Fundamental Physics
- arxiv url: http://arxiv.org/abs/2302.04000v1
- Date: Wed, 8 Feb 2023 11:21:41 GMT
- ステータス: 処理完了
- システム内更新日: 2023-02-09 16:37:56.737931
- Title: Quantum Electronics for Fundamental Physics
- Title(参考訳): 基礎物理学のための量子エレクトロニクス
- Authors: Stafford Withington
- Abstract要約: 量子センサと電子工学の基礎物理学の新たな分野が紹介される。
本稿は、電波から遠赤外波長への超低雑音技術に焦点を当て、既存のデバイスは理論的な限界に満たない。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The emerging field of quantum sensors and electronics for fundamental physics
is introduced, emphasising the role of thin-film superconducting devices.
Although the next generation of ground-based and space-based experiments
requires the development of advanced technology across the whole of the
electromagnetic spectrum, this article focuses on ultra-low-noise techniques
for radio to far-infrared wavelengths, where existing devices fall short of
theoretical limits. Passive circuits, detectors and amplifiers are described
from classical and quantum perspectives, and the sensitivities of
detector-based and amplifier-based instruments discussed. Advances will be
achieved through refinements in existing technology, but innovation is
essential. The needed developments go beyond engineering and relate to
theoretical studies that bring together concepts from quantum information
theory, quantum field theory, classical circuit theory, and device physics.
This article has been written to introduce graduate-level scientists to quantum
sensor physics, rather than as a formal review.
- Abstract(参考訳): 量子センサと電子工学の基礎物理学の新たな分野が紹介され、薄膜超伝導デバイスの役割を強調している。
次世代の地上実験と宇宙実験は電磁スペクトル全体にわたる高度な技術開発を必要とするが、本稿は、既存のデバイスが理論的限界に満たない電波から遠赤外線への超低ノイズ技術に焦点を当てる。
受動回路、検出器、増幅器は古典的および量子的な視点から説明され、検出器ベースおよび増幅器ベースの機器の感度が議論されている。
進歩は既存の技術の改良によって達成されるが、イノベーションは不可欠である。
必要とされる発展は工学を超えて、量子情報理論、量子場理論、古典回路理論、デバイス物理学の概念をまとめる理論的研究に関係している。
この記事は、正式なレビューではなく、大学院レベルの科学者を量子センサー物理学に紹介するために書かれた。
関連論文リスト
- Lecture Notes on Quantum Electrical Circuits [49.86749884231445]
量子電気回路の理論は、回路量子力学または回路QEDと呼ばれる。
この理論の目標は、最も関連する自由度に関する量子記述を提供することである。
これらの講義ノートは、物理学と電気工学における理論指向の修士または博士課程の学生に対して、この主題の教育的概要を提供することを目的としている。
論文 参考訳(メタデータ) (2023-12-08T19:26:34Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
本研究では,高エネルギー物理における量子データ学習の実践的問題への適用性について検討する。
我々は、量子畳み込みニューラルネットワークに基づくアンサッツを用いて、基底状態の量子位相を認識できることを数値的に示す。
これらのベンチマークで示された非自明な学習特性の観察は、高エネルギー物理学における量子データ学習アーキテクチャのさらなる探求の動機となる。
論文 参考訳(メタデータ) (2023-06-29T18:00:01Z) - Quantum sensing for particle physics [0.0]
量子センシングは、基礎物理学を探索するための急速に成長するアプローチである。
新しいセンサー技術には原子干渉計、光学デバイス、そして絡み合いを含む原子と核時計が含まれる。
このパースペクティブは、将来の粒子物理学実験におけるこれらの技術の機会を探求する。
論文 参考訳(メタデータ) (2023-05-19T08:34:19Z) - Quantum electrodynamics of intense laser-matter interactions: A tool for
quantum state engineering [0.1465840097113565]
我々は、強いレーザー-原子相互作用の包括的完全に量子化された記述を提供する。
我々は高調波発生の過程について詳述する。
半古典理論の文脈では明らかにできない新しい現象について論じる。
論文 参考訳(メタデータ) (2022-06-09T07:07:30Z) - Materials and devices for fundamental quantum science and quantum
technologies [41.6785981575436]
我々は、先進的な超伝導材料、ファンデルワールス材料、モワール量子物質に焦点を当てる。
我々は、高エネルギーの実験物理学や理論物理学から量子材料科学やエネルギー貯蔵まで、様々な応用の可能性を強調している。
論文 参考訳(メタデータ) (2022-01-23T13:33:19Z) - Atomtronic circuits: from many-body physics to quantum technologies [0.0]
原子トロニクスは、量子科学と技術応用の基礎研究のために、物質波回路で動く超低温原子を操作することを目的としている。
リングトラップや2端子系などの単純な回路における物質波の物理について述べる。
論文 参考訳(メタデータ) (2021-07-18T23:55:14Z) - Standard Model Physics and the Digital Quantum Revolution: Thoughts
about the Interface [68.8204255655161]
量子システムの分離・制御・絡み合いの進歩は、かつての量子力学の興味深い特徴を、破壊的な科学的・技術的進歩のための乗り物へと変えつつある。
本稿では,3つの領域科学理論家の視点から,絡み合い,複雑性,量子シミュレーションのインターフェースについて考察する。
論文 参考訳(メタデータ) (2021-07-10T06:12:06Z) - Circuit Quantum Electrodynamics [62.997667081978825]
マクロレベルの量子力学的効果は、1980年代にジョセフソン接合型超伝導回路で初めて研究された。
過去20年間で、量子情報科学の出現は、これらの回路を量子情報プロセッサの量子ビットとして利用するための研究を強化してきた。
量子電磁力学(QED)の分野は、今では独立して繁栄する研究分野となっている。
論文 参考訳(メタデータ) (2020-05-26T12:47:38Z) - Quantum Hall phase emerging in an array of atoms interacting with
photons [101.18253437732933]
位相量子相は現代物理学の多くの概念の根底にある。
ここでは、トポロジカルエッジ状態、スペクトルランダウレベル、ホフスタッターバタフライを持つ量子ホール相が、単純な量子系に出現することを明らかにする。
このようなシステムでは、古典的なディックモデルによって記述されている光に結合した2レベル原子(量子ビット)の配列が、最近、低温原子と超伝導量子ビットによる実験で実現されている。
論文 参考訳(メタデータ) (2020-03-18T14:56:39Z) - Theoretical methods for ultrastrong light-matter interactions [91.3755431537592]
本稿では,超強結合状態における空洞量子力学を理解するために開発された理論的手法について概説する。
本稿は、基底状態特性の解析的推定からマスター方程式の適切な計算まで、最近の進歩の概要を概説する。
論文の大半は、超強結合が到達した様々な実験プラットフォームに関連する効果的なモデルに特化している。
論文 参考訳(メタデータ) (2020-01-23T18:09:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。