A data variation robust learning model based on importance sampling
- URL: http://arxiv.org/abs/2302.04438v1
- Date: Thu, 9 Feb 2023 04:50:06 GMT
- Title: A data variation robust learning model based on importance sampling
- Authors: Jiangshe Zhang, Lizhen Ji, Fei Gao, Mengyao Li
- Abstract summary: We propose an importance sampling based data variation robust loss (ISloss) for learning problems which minimizes the worst case of loss under the constraint of distribution deviation.
We show that the proposed method is robust under large distribution deviations.
- Score: 11.285259001286978
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A crucial assumption underlying the most current theory of machine learning
is that the training distribution is identical to the testing distribution.
However, this assumption may not hold in some real-world applications. In this
paper, we propose an importance sampling based data variation robust loss
(ISloss) for learning problems which minimizes the worst case of loss under the
constraint of distribution deviation. The distribution deviation constraint can
be converted to the constraint over a set of weight distributions centered on
the uniform distribution derived from the importance sampling method.
Furthermore, we reveal that there is a relationship between ISloss under the
logarithmic transformation (LogISloss) and the p-norm loss. We apply the
proposed LogISloss to the face verification problem on Racial Faces in the Wild
dataset and show that the proposed method is robust under large distribution
deviations.
Related papers
- Distributionally robust risk evaluation with an isotonic constraint [20.74502777102024]
Distributionally robust learning aims to control the worst-case statistical performance within an uncertainty set of candidate distributions.
We propose a shape-constrained approach to DRL, which incorporates prior information about the way in which the unknown target distribution differs from its estimate.
Empirical studies on both synthetic and real data examples demonstrate the improved accuracy of the proposed shape-constrained approach.
arXiv Detail & Related papers (2024-07-09T13:56:34Z) - Rejection via Learning Density Ratios [50.91522897152437]
Classification with rejection emerges as a learning paradigm which allows models to abstain from making predictions.
We propose a different distributional perspective, where we seek to find an idealized data distribution which maximizes a pretrained model's performance.
Our framework is tested empirically over clean and noisy datasets.
arXiv Detail & Related papers (2024-05-29T01:32:17Z) - Dr. FERMI: A Stochastic Distributionally Robust Fair Empirical Risk
Minimization Framework [12.734559823650887]
In the presence of distribution shifts, fair machine learning models may behave unfairly on test data.
Existing algorithms require full access to data and cannot be used when small batches are used.
This paper proposes the first distributionally robust fairness framework with convergence guarantees that do not require knowledge of the causal graph.
arXiv Detail & Related papers (2023-09-20T23:25:28Z) - Hinge-Wasserstein: Estimating Multimodal Aleatoric Uncertainty in Regression Tasks [9.600416563894658]
We study regression from images to parameter values and here it is common to detect uncertainty by predicting probability distributions.
Traditional loss functions lead to poor probability distribution estimates and severe overconfidence, in the absence of full ground truth distributions.
We propose hinge-Wasserstein -- a simple improvement of the Wasserstein loss that reduces the penalty for weak secondary modes during training.
arXiv Detail & Related papers (2023-06-01T11:20:09Z) - Information Theoretical Importance Sampling Clustering [18.248246885248733]
A current assumption of most clustering methods is that the training data and future data are taken from the same distribution.
We propose an information theoretical importance sampling based approach for clustering problems (ITISC)
Experiment results on synthetic datasets and a real-world load forecasting problem validate the effectiveness of the proposed model.
arXiv Detail & Related papers (2023-02-09T03:18:53Z) - Reliable amortized variational inference with physics-based latent
distribution correction [0.4588028371034407]
A neural network is trained to approximate the posterior distribution over existing pairs of model and data.
The accuracy of this approach relies on the availability of high-fidelity training data.
We show that our correction step improves the robustness of amortized variational inference with respect to changes in number of source experiments, noise variance, and shifts in the prior distribution.
arXiv Detail & Related papers (2022-07-24T02:38:54Z) - Robust Calibration with Multi-domain Temperature Scaling [86.07299013396059]
We develop a systematic calibration model to handle distribution shifts by leveraging data from multiple domains.
Our proposed method -- multi-domain temperature scaling -- uses the robustness in the domains to improve calibration under distribution shift.
arXiv Detail & Related papers (2022-06-06T17:32:12Z) - Certifying Model Accuracy under Distribution Shifts [151.67113334248464]
We present provable robustness guarantees on the accuracy of a model under bounded Wasserstein shifts of the data distribution.
We show that a simple procedure that randomizes the input of the model within a transformation space is provably robust to distributional shifts under the transformation.
arXiv Detail & Related papers (2022-01-28T22:03:50Z) - Accounting for Unobserved Confounding in Domain Generalization [107.0464488046289]
This paper investigates the problem of learning robust, generalizable prediction models from a combination of datasets.
Part of the challenge of learning robust models lies in the influence of unobserved confounders.
We demonstrate the empirical performance of our approach on healthcare data from different modalities.
arXiv Detail & Related papers (2020-07-21T08:18:06Z) - When Relation Networks meet GANs: Relation GANs with Triplet Loss [110.7572918636599]
Training stability is still a lingering concern of generative adversarial networks (GANs)
In this paper, we explore a relation network architecture for the discriminator and design a triplet loss which performs better generalization and stability.
Experiments on benchmark datasets show that the proposed relation discriminator and new loss can provide significant improvement on variable vision tasks.
arXiv Detail & Related papers (2020-02-24T11:35:28Z) - GenDICE: Generalized Offline Estimation of Stationary Values [108.17309783125398]
We show that effective estimation can still be achieved in important applications.
Our approach is based on estimating a ratio that corrects for the discrepancy between the stationary and empirical distributions.
The resulting algorithm, GenDICE, is straightforward and effective.
arXiv Detail & Related papers (2020-02-21T00:27:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.