Hinge-Wasserstein: Estimating Multimodal Aleatoric Uncertainty in Regression Tasks
- URL: http://arxiv.org/abs/2306.00560v4
- Date: Fri, 21 Jun 2024 06:09:50 GMT
- Title: Hinge-Wasserstein: Estimating Multimodal Aleatoric Uncertainty in Regression Tasks
- Authors: Ziliang Xiong, Arvi Jonnarth, Abdelrahman Eldesokey, Joakim Johnander, Bastian Wandt, Per-Erik Forssen,
- Abstract summary: We study regression from images to parameter values and here it is common to detect uncertainty by predicting probability distributions.
Traditional loss functions lead to poor probability distribution estimates and severe overconfidence, in the absence of full ground truth distributions.
We propose hinge-Wasserstein -- a simple improvement of the Wasserstein loss that reduces the penalty for weak secondary modes during training.
- Score: 9.600416563894658
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Computer vision systems that are deployed in safety-critical applications need to quantify their output uncertainty. We study regression from images to parameter values and here it is common to detect uncertainty by predicting probability distributions. In this context, we investigate the regression-by-classification paradigm which can represent multimodal distributions, without a prior assumption on the number of modes. Through experiments on a specifically designed synthetic dataset, we demonstrate that traditional loss functions lead to poor probability distribution estimates and severe overconfidence, in the absence of full ground truth distributions. In order to alleviate these issues, we propose hinge-Wasserstein -- a simple improvement of the Wasserstein loss that reduces the penalty for weak secondary modes during training. This enables prediction of complex distributions with multiple modes, and allows training on datasets where full ground truth distributions are not available. In extensive experiments, we show that the proposed loss leads to substantially better uncertainty estimation on two challenging computer vision tasks: horizon line detection and stereo disparity estimation.
Related papers
- Uncertainty Quantification via Hölder Divergence for Multi-View Representation Learning [18.419742575630217]
This paper introduces a novel algorithm based on H"older Divergence (HD) to enhance the reliability of multi-view learning.
Through the Dempster-Shafer theory, integration of uncertainty from different modalities, thereby generating a comprehensive result.
Mathematically, HD proves to better measure the distance'' between real data distribution and predictive distribution of the model.
arXiv Detail & Related papers (2024-10-29T04:29:44Z) - Probabilistic Contrastive Learning for Long-Tailed Visual Recognition [78.70453964041718]
Longtailed distributions frequently emerge in real-world data, where a large number of minority categories contain a limited number of samples.
Recent investigations have revealed that supervised contrastive learning exhibits promising potential in alleviating the data imbalance.
We propose a novel probabilistic contrastive (ProCo) learning algorithm that estimates the data distribution of the samples from each class in the feature space.
arXiv Detail & Related papers (2024-03-11T13:44:49Z) - Quantification of Predictive Uncertainty via Inference-Time Sampling [57.749601811982096]
We propose a post-hoc sampling strategy for estimating predictive uncertainty accounting for data ambiguity.
The method can generate different plausible outputs for a given input and does not assume parametric forms of predictive distributions.
arXiv Detail & Related papers (2023-08-03T12:43:21Z) - Deep Anti-Regularized Ensembles provide reliable out-of-distribution
uncertainty quantification [4.750521042508541]
Deep ensemble often return overconfident estimates outside the training domain.
We show that an ensemble of networks with large weights fitting the training data are likely to meet these two objectives.
We derive a theoretical framework for this approach and show that the proposed optimization can be seen as a "water-filling" problem.
arXiv Detail & Related papers (2023-04-08T15:25:12Z) - How Reliable is Your Regression Model's Uncertainty Under Real-World
Distribution Shifts? [46.05502630457458]
We propose a benchmark of 8 image-based regression datasets with different types of challenging distribution shifts.
We find that while methods are well calibrated when there is no distribution shift, they all become highly overconfident on many of the benchmark datasets.
arXiv Detail & Related papers (2023-02-07T18:54:39Z) - Modeling Multimodal Aleatoric Uncertainty in Segmentation with Mixture
of Stochastic Expert [24.216869988183092]
We focus on capturing the data-inherent uncertainty (aka aleatoric uncertainty) in segmentation, typically when ambiguities exist in input images.
We propose a novel mixture of experts (MoSE) model, where each expert network estimates a distinct mode of aleatoric uncertainty.
We develop a Wasserstein-like loss that directly minimizes the distribution distance between the MoSE and ground truth annotations.
arXiv Detail & Related papers (2022-12-14T16:48:21Z) - Uncertainty Modeling for Out-of-Distribution Generalization [56.957731893992495]
We argue that the feature statistics can be properly manipulated to improve the generalization ability of deep learning models.
Common methods often consider the feature statistics as deterministic values measured from the learned features.
We improve the network generalization ability by modeling the uncertainty of domain shifts with synthesized feature statistics during training.
arXiv Detail & Related papers (2022-02-08T16:09:12Z) - The Hidden Uncertainty in a Neural Networks Activations [105.4223982696279]
The distribution of a neural network's latent representations has been successfully used to detect out-of-distribution (OOD) data.
This work investigates whether this distribution correlates with a model's epistemic uncertainty, thus indicating its ability to generalise to novel inputs.
arXiv Detail & Related papers (2020-12-05T17:30:35Z) - Diversity inducing Information Bottleneck in Model Ensembles [73.80615604822435]
In this paper, we target the problem of generating effective ensembles of neural networks by encouraging diversity in prediction.
We explicitly optimize a diversity inducing adversarial loss for learning latent variables and thereby obtain diversity in the output predictions necessary for modeling multi-modal data.
Compared to the most competitive baselines, we show significant improvements in classification accuracy, under a shift in the data distribution.
arXiv Detail & Related papers (2020-03-10T03:10:41Z) - When Relation Networks meet GANs: Relation GANs with Triplet Loss [110.7572918636599]
Training stability is still a lingering concern of generative adversarial networks (GANs)
In this paper, we explore a relation network architecture for the discriminator and design a triplet loss which performs better generalization and stability.
Experiments on benchmark datasets show that the proposed relation discriminator and new loss can provide significant improvement on variable vision tasks.
arXiv Detail & Related papers (2020-02-24T11:35:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.