Weakly Supervised Human Skin Segmentation using Guidance Attention
Mechanisms
- URL: http://arxiv.org/abs/2302.04625v1
- Date: Thu, 9 Feb 2023 13:20:49 GMT
- Title: Weakly Supervised Human Skin Segmentation using Guidance Attention
Mechanisms
- Authors: Kooshan Hashemifard, Pau Climent-Perez, Francisco Florez-Revuelta
- Abstract summary: This paper presents a robust data-driven skin segmentation method for a single image.
The proposed method incorporates two attention modules, Body Attention and Skin Attention, that utilize contextual information to improve segmentation results.
The results of this study demonstrate that the proposed method is comparable to, or outperforms, state-of-the-art methods on benchmark datasets.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Human skin segmentation is a crucial task in computer vision and biometric
systems, yet it poses several challenges such as variability in skin color,
pose, and illumination. This paper presents a robust data-driven skin
segmentation method for a single image that addresses these challenges through
the integration of contextual information and efficient network design. In
addition to robustness and accuracy, the integration into real-time systems
requires a careful balance between computational power, speed, and performance.
The proposed method incorporates two attention modules, Body Attention and Skin
Attention, that utilize contextual information to improve segmentation results.
These modules draw attention to the desired areas, focusing on the body
boundaries and skin pixels, respectively. Additionally, an efficient network
architecture is employed in the encoder part to minimize computational power
while retaining high performance. To handle the issue of noisy labels in skin
datasets, the proposed method uses a weakly supervised training strategy,
relying on the Skin Attention module. The results of this study demonstrate
that the proposed method is comparable to, or outperforms, state-of-the-art
methods on benchmark datasets.
Related papers
- UnSegGNet: Unsupervised Image Segmentation using Graph Neural Networks [9.268228808049951]
This research contributes to the broader field of unsupervised medical imaging and computer vision.
It presents an innovative methodology for image segmentation that aligns with real-world challenges.
The proposed method holds promise for diverse applications, including medical imaging, remote sensing, and object recognition.
arXiv Detail & Related papers (2024-05-09T19:02:00Z) - Self-trained Panoptic Segmentation [0.0]
Panoptic segmentation is an important computer vision task which combines semantic and instance segmentation.
Recent advancements in self-supervised learning approaches have shown great potential in leveraging synthetic and unlabelled data to generate pseudo-labels.
The aim of this work is to develop a framework to perform embedding-based self-supervised panoptic segmentation using self-training in a synthetic-to-real domain adaptation problem setting.
arXiv Detail & Related papers (2023-11-17T17:06:59Z) - Self-supervised Semantic Segmentation: Consistency over Transformation [3.485615723221064]
We propose a novel self-supervised algorithm, textbfS$3$-Net, which integrates a robust framework based on the proposed Inception Large Kernel Attention (I-LKA) modules.
We leverage deformable convolution as an integral component to effectively capture and delineate lesion deformations for superior object boundary definition.
Our experimental results on skin lesion and lung organ segmentation tasks show the superior performance of our method compared to the SOTA approaches.
arXiv Detail & Related papers (2023-08-31T21:28:46Z) - Adaptive Local-Component-aware Graph Convolutional Network for One-shot
Skeleton-based Action Recognition [54.23513799338309]
We present an Adaptive Local-Component-aware Graph Convolutional Network for skeleton-based action recognition.
Our method provides a stronger representation than the global embedding and helps our model reach state-of-the-art.
arXiv Detail & Related papers (2022-09-21T02:33:07Z) - Information-Theoretic Odometry Learning [83.36195426897768]
We propose a unified information theoretic framework for learning-motivated methods aimed at odometry estimation.
The proposed framework provides an elegant tool for performance evaluation and understanding in information-theoretic language.
arXiv Detail & Related papers (2022-03-11T02:37:35Z) - Improved Speech Emotion Recognition using Transfer Learning and
Spectrogram Augmentation [56.264157127549446]
Speech emotion recognition (SER) is a challenging task that plays a crucial role in natural human-computer interaction.
One of the main challenges in SER is data scarcity.
We propose a transfer learning strategy combined with spectrogram augmentation.
arXiv Detail & Related papers (2021-08-05T10:39:39Z) - Unsupervised Image Segmentation by Mutual Information Maximization and
Adversarial Regularization [7.165364364478119]
We propose a novel fully unsupervised semantic segmentation method, the so-called Information Maximization and Adrial Regularization (InMARS)
Inspired by human perception which parses a scene into perceptual groups, our proposed approach first partitions an input image into meaningful regions (also known as superpixels)
Next, it utilizes Mutual-Information-Maximization followed by an adversarial training strategy to cluster these regions into semantically meaningful classes.
Our experiments demonstrate that our method achieves the state-of-the-art performance on two commonly used unsupervised semantic segmentation datasets.
arXiv Detail & Related papers (2021-07-01T18:36:27Z) - Learning to Segment Human Body Parts with Synthetically Trained Deep
Convolutional Networks [58.0240970093372]
This paper presents a new framework for human body part segmentation based on Deep Convolutional Neural Networks trained using only synthetic data.
The proposed approach achieves cutting-edge results without the need of training the models with real annotated data of human body parts.
arXiv Detail & Related papers (2021-02-02T12:26:50Z) - A Survey on Deep Learning Methods for Semantic Image Segmentation in
Real-Time [0.0]
In many areas, such as robotics and autonomous vehicles, semantic image segmentation is crucial.
The success of medical diagnosis and treatment relies on the extremely accurate understanding of the data under consideration.
Recent developments in deep learning have provided a host of tools to tackle this problem efficiently and with increased accuracy.
arXiv Detail & Related papers (2020-09-27T20:30:10Z) - A Trainable Optimal Transport Embedding for Feature Aggregation and its
Relationship to Attention [96.77554122595578]
We introduce a parametrized representation of fixed size, which embeds and then aggregates elements from a given input set according to the optimal transport plan between the set and a trainable reference.
Our approach scales to large datasets and allows end-to-end training of the reference, while also providing a simple unsupervised learning mechanism with small computational cost.
arXiv Detail & Related papers (2020-06-22T08:35:58Z) - Towards High Performance Human Keypoint Detection [87.1034745775229]
We find that context information plays an important role in reasoning human body configuration and invisible keypoints.
Inspired by this, we propose a cascaded context mixer ( CCM) which efficiently integrates spatial and channel context information.
To maximize CCM's representation capability, we develop a hard-negative person detection mining strategy and a joint-training strategy.
We present several sub-pixel refinement techniques for postprocessing keypoint predictions to improve detection accuracy.
arXiv Detail & Related papers (2020-02-03T02:24:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.