Partial Optimality in Cubic Correlation Clustering
- URL: http://arxiv.org/abs/2302.04694v2
- Date: Fri, 31 Mar 2023 14:50:55 GMT
- Title: Partial Optimality in Cubic Correlation Clustering
- Authors: David Stein, Silvia Di Gregorio, Bjoern Andres
- Abstract summary: Certifying optimality is NP-hard and practically hampered already by the complexity of the problem statement.
Here, we focus on establishing partial optimality conditions for the special case of complete graphs and cubic objective functions.
In addition, we define and implement algorithms for testing these conditions and examine their effect numerically, on two datasets.
- Score: 6.372499127940625
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The higher-order correlation clustering problem is an expressive model, and
recently, local search heuristics have been proposed for several applications.
Certifying optimality, however, is NP-hard and practically hampered already by
the complexity of the problem statement. Here, we focus on establishing partial
optimality conditions for the special case of complete graphs and cubic
objective functions. In addition, we define and implement algorithms for
testing these conditions and examine their effect numerically, on two datasets.
Related papers
- Projection-Free Variance Reduction Methods for Stochastic Constrained Multi-Level Compositional Optimization [34.628967272528044]
This paper investigates projection-free algorithms for constrained multi-level optimization functions.
By using a stage-wise adaptation, we obtain complexities for convex and strongly convex functions.
arXiv Detail & Related papers (2024-06-06T06:56:56Z) - Low-Rank Extragradient Methods for Scalable Semidefinite Optimization [0.0]
We focus on high-dimensional and plausible settings in which the problem admits a low-rank solution.
We provide several theoretical results proving that, under these circumstances, the well-known Extragradient method converges to a solution of the constrained optimization problem.
arXiv Detail & Related papers (2024-02-14T10:48:00Z) - Sample Complexity for Quadratic Bandits: Hessian Dependent Bounds and
Optimal Algorithms [64.10576998630981]
We show the first tight characterization of the optimal Hessian-dependent sample complexity.
A Hessian-independent algorithm universally achieves the optimal sample complexities for all Hessian instances.
The optimal sample complexities achieved by our algorithm remain valid for heavy-tailed noise distributions.
arXiv Detail & Related papers (2023-06-21T17:03:22Z) - Tree ensemble kernels for Bayesian optimization with known constraints
over mixed-feature spaces [54.58348769621782]
Tree ensembles can be well-suited for black-box optimization tasks such as algorithm tuning and neural architecture search.
Two well-known challenges in using tree ensembles for black-box optimization are (i) effectively quantifying model uncertainty for exploration and (ii) optimizing over the piece-wise constant acquisition function.
Our framework performs as well as state-of-the-art methods for unconstrained black-box optimization over continuous/discrete features and outperforms competing methods for problems combining mixed-variable feature spaces and known input constraints.
arXiv Detail & Related papers (2022-07-02T16:59:37Z) - On the Complexity of a Practical Primal-Dual Coordinate Method [63.899427212054995]
We prove complexity bounds for primal-dual algorithm with random and coordinate descent (PURE-CD)
It has been shown to obtain good extrapolation for solving bi-max performance problems.
arXiv Detail & Related papers (2022-01-19T16:14:27Z) - Trilevel and Multilevel Optimization using Monotone Operator Theory [5.927983571004003]
We consider a trilevel optimization problem, where the objective of the two lower layers consists of a sum of a smooth and a non-smooth term.
We present a natural first-order algorithm and analyze its convergence and rates of convergence in several regimes of parameters.
arXiv Detail & Related papers (2021-05-19T21:31:18Z) - Joint Continuous and Discrete Model Selection via Submodularity [1.332560004325655]
In model selection problems for machine learning, the desire for a well-performing model with meaningful structure is typically expressed through a regularized optimization problem.
In many scenarios, however, numerically meaningful structure is specified in some discrete space leading to difficult non optimization problems.
We show how simple continuous or discrete constraints can also be handled for certain problem classes, motivated by robust optimization.
arXiv Detail & Related papers (2021-02-17T21:14:47Z) - Efficient Methods for Structured Nonconvex-Nonconcave Min-Max
Optimization [98.0595480384208]
We propose a generalization extraient spaces which converges to a stationary point.
The algorithm applies not only to general $p$-normed spaces, but also to general $p$-dimensional vector spaces.
arXiv Detail & Related papers (2020-10-31T21:35:42Z) - Convergence of adaptive algorithms for weakly convex constrained
optimization [59.36386973876765]
We prove the $mathcaltilde O(t-1/4)$ rate of convergence for the norm of the gradient of Moreau envelope.
Our analysis works with mini-batch size of $1$, constant first and second order moment parameters, and possibly smooth optimization domains.
arXiv Detail & Related papers (2020-06-11T17:43:19Z) - Ranking a set of objects: a graph based least-square approach [70.7866286425868]
We consider the problem of ranking $N$ objects starting from a set of noisy pairwise comparisons provided by a crowd of equal workers.
We propose a class of non-adaptive ranking algorithms that rely on a least-squares intrinsic optimization criterion for the estimation of qualities.
arXiv Detail & Related papers (2020-02-26T16:19:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.