Trilevel and Multilevel Optimization using Monotone Operator Theory
- URL: http://arxiv.org/abs/2105.09407v2
- Date: Thu, 19 Oct 2023 08:09:58 GMT
- Title: Trilevel and Multilevel Optimization using Monotone Operator Theory
- Authors: Allahkaram Shafiei and Vyacheslav Kungurtsev and Jakub Marecek
- Abstract summary: We consider a trilevel optimization problem, where the objective of the two lower layers consists of a sum of a smooth and a non-smooth term.
We present a natural first-order algorithm and analyze its convergence and rates of convergence in several regimes of parameters.
- Score: 5.927983571004003
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We consider rather a general class of multi-level optimization problems,
where a convex objective function is to be minimized subject to constraints of
optimality of nested convex optimization problems. As a special case, we
consider a trilevel optimization problem, where the objective of the two lower
layers consists of a sum of a smooth and a non-smooth term.~Based on
fixed-point theory and related arguments, we present a natural first-order
algorithm and analyze its convergence and rates of convergence in several
regimes of parameters.
Related papers
- Projection-Free Variance Reduction Methods for Stochastic Constrained Multi-Level Compositional Optimization [34.628967272528044]
This paper investigates projection-free algorithms for constrained multi-level optimization functions.
By using a stage-wise adaptation, we obtain complexities for convex and strongly convex functions.
arXiv Detail & Related papers (2024-06-06T06:56:56Z) - Low-Rank Extragradient Methods for Scalable Semidefinite Optimization [0.0]
We focus on high-dimensional and plausible settings in which the problem admits a low-rank solution.
We provide several theoretical results proving that, under these circumstances, the well-known Extragradient method converges to a solution of the constrained optimization problem.
arXiv Detail & Related papers (2024-02-14T10:48:00Z) - Linearization Algorithms for Fully Composite Optimization [61.20539085730636]
This paper studies first-order algorithms for solving fully composite optimization problems convex compact sets.
We leverage the structure of the objective by handling differentiable and non-differentiable separately, linearizing only the smooth parts.
arXiv Detail & Related papers (2023-02-24T18:41:48Z) - A Constrained Optimization Approach to Bilevel Optimization with
Multiple Inner Minima [49.320758794766185]
We propose a new approach, which convert the bilevel problem to an equivalent constrained optimization, and then the primal-dual algorithm can be used to solve the problem.
Such an approach enjoys a few advantages including (a) addresses the multiple inner minima challenge; (b) fully first-order efficiency without Jacobian computations.
arXiv Detail & Related papers (2022-03-01T18:20:01Z) - Faster Algorithm and Sharper Analysis for Constrained Markov Decision
Process [56.55075925645864]
The problem of constrained decision process (CMDP) is investigated, where an agent aims to maximize the expected accumulated discounted reward subject to multiple constraints.
A new utilities-dual convex approach is proposed with novel integration of three ingredients: regularized policy, dual regularizer, and Nesterov's gradient descent dual.
This is the first demonstration that nonconcave CMDP problems can attain the lower bound of $mathcal O (1/epsilon)$ for all complexity optimization subject to convex constraints.
arXiv Detail & Related papers (2021-10-20T02:57:21Z) - Unified Convergence Analysis for Adaptive Optimization with Moving Average Estimator [75.05106948314956]
We show that an increasing large momentum parameter for the first-order moment is sufficient for adaptive scaling.
We also give insights for increasing the momentum in a stagewise manner in accordance with stagewise decreasing step size.
arXiv Detail & Related papers (2021-04-30T08:50:24Z) - Recent Theoretical Advances in Non-Convex Optimization [56.88981258425256]
Motivated by recent increased interest in analysis of optimization algorithms for non- optimization in deep networks and other problems in data, we give an overview of recent results of theoretical optimization algorithms for non- optimization.
arXiv Detail & Related papers (2020-12-11T08:28:51Z) - Convergence of adaptive algorithms for weakly convex constrained
optimization [59.36386973876765]
We prove the $mathcaltilde O(t-1/4)$ rate of convergence for the norm of the gradient of Moreau envelope.
Our analysis works with mini-batch size of $1$, constant first and second order moment parameters, and possibly smooth optimization domains.
arXiv Detail & Related papers (2020-06-11T17:43:19Z) - Halpern Iteration for Near-Optimal and Parameter-Free Monotone Inclusion
and Strong Solutions to Variational Inequalities [14.848525762485872]
We leverage the connections between nonexpansive maps, monotone Lipschitz operators, and proximal mappings to obtain near-optimal solutions to monotone inclusion problems.
These results translate into near-optimal guarantees for approximating strong solutions to variational inequality problems, approximating convex-concave min-max optimization problems, and minimizing the norm of the gradient in min-max optimization problems.
arXiv Detail & Related papers (2020-02-20T17:12:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.