論文の概要: Augmenting NLP data to counter Annotation Artifacts for NLI Tasks
- arxiv url: http://arxiv.org/abs/2302.04700v1
- Date: Thu, 9 Feb 2023 15:34:53 GMT
- ステータス: 処理完了
- システム内更新日: 2023-02-10 15:25:11.109385
- Title: Augmenting NLP data to counter Annotation Artifacts for NLI Tasks
- Title(参考訳): NLIタスクのアノテーションアーチファクトに対応するNLPデータの拡張
- Authors: Armaan Singh Bhullar
- Abstract要約: 大規模な事前トレーニングされたNLPモデルは、ベンチマークデータセット上で高いパフォーマンスを達成するが、基礎となるタスクを実際に"解決"することはない。
モデルの性能の限界を理解するために、まずコントラストと逆例を用いてこの現象を探求する。
次に、このバイアスを修正し、その有効性を測定するためのデータ拡張手法を提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we explore Annotation Artifacts - the phenomena wherein large
pre-trained NLP models achieve high performance on benchmark datasets but do
not actually "solve" the underlying task and instead rely on some dataset
artifacts (same across train, validation, and test sets) to figure out the
right answer. We explore this phenomenon on the well-known Natural Language
Inference task by first using contrast and adversarial examples to understand
limitations to the model's performance and show one of the biases arising from
annotation artifacts (the way training data was constructed by the annotators).
We then propose a data augmentation technique to fix this bias and measure its
effectiveness.
- Abstract(参考訳): 本稿では,大規模に事前学習されたnlpモデルがベンチマークデータセットでハイパフォーマンスを実現するが,実際に基礎タスクを"解決"せず,その代わりにいくつかのデータセットアーティファクト(列車,バリデーション,テストセットに共通する)に依存して正しい答えを求める現象であるアノテーションアーティファクトを考察する。
この現象をよく知られた自然言語推論タスクで検討し、まずコントラストと逆さまの例を用いてモデルの性能の限界を理解し、アノテーションアーチファクトから生じるバイアスの1つを示す(アノテータによるトレーニングデータの構築方法)。
次に,このバイアスを解消し,その効果を測定するためのデータ拡張手法を提案する。
関連論文リスト
- How Hard is this Test Set? NLI Characterization by Exploiting Training Dynamics [49.9329723199239]
本稿では, 実例と非実例を手作業で構築することなく, 挑戦的なテストセットを自動生成する手法を提案する。
一般的なNLIデータセットのテストセットを,トレーニングダイナミクスを利用した3つの難易度に分類する。
我々の評価法がトレーニングセットに適用された場合、トレーニング対象データのごく一部でトレーニングされたモデルは、フルデータセットでトレーニングされたモデルに匹敵するパフォーマンスを達成する。
論文 参考訳(メタデータ) (2024-10-04T13:39:21Z) - SINDER: Repairing the Singular Defects of DINOv2 [61.98878352956125]
大規模なデータセットでトレーニングされたビジョントランスフォーマーモデルは、抽出したパッチトークンにアーティファクトを表示することが多い。
本稿では,小さなデータセットのみを用いて構造欠陥を補正するスムーズなスムーズな正規化を提案する。
論文 参考訳(メタデータ) (2024-07-23T20:34:23Z) - Understanding and Mitigating the Label Noise in Pre-training on
Downstream Tasks [91.15120211190519]
本稿では、事前学習データセットにおけるノイズの性質を理解し、下流タスクへの影響を軽減することを目的とする。
雑音の悪影響を軽減するために特徴空間に適応する軽量ブラックボックスチューニング法(NMTune)を提案する。
論文 参考訳(メタデータ) (2023-09-29T06:18:15Z) - Improving the Adversarial Robustness of NLP Models by Information
Bottleneck [112.44039792098579]
非破壊機能は敵によって容易に操作でき、NLPモデルを騙すことができる。
本研究では,情報ボトルネック理論を用いて,タスク固有のロバストな特徴を捕捉し,非ロバストな特徴を除去する可能性を検討する。
情報ボトルネックに基づく手法を用いてトレーニングしたモデルでは,ロバストな精度で大幅な改善が達成できることを示す。
論文 参考訳(メタデータ) (2022-06-11T12:12:20Z) - Robust Task-Oriented Dialogue Generation with Contrastive Pre-training
and Adversarial Filtering [17.7709632238066]
データアーティファクトは機械学習モデルにインセンティブを与え、非伝達可能な一般化を学ぶ。
我々は、MultiWOZのような一般的なデータセットがそのようなデータアーティファクトを含んでいるかどうかを検討する。
本稿では,これらの手法を無視し,一般化可能なパターンを学習することをモデルに推奨する,対照的な学習ベースのフレームワークを提案する。
論文 参考訳(メタデータ) (2022-05-20T03:13:02Z) - Task-guided Disentangled Tuning for Pretrained Language Models [16.429787408467703]
本稿では,事前学習型言語モデル(PLM)のためのタスク誘導型ディスタングル型チューニング(TDT)を提案する。
TDTは、タスク関連信号を絡み合った表現から切り離すことにより、表現の一般化を強化する。
GLUE と CLUE のベンチマークによる実験結果から,TDT は異なる PLM を用いた微調整よりも一貫した結果が得られた。
論文 参考訳(メタデータ) (2022-03-22T03:11:39Z) - Combining Feature and Instance Attribution to Detect Artifacts [62.63504976810927]
トレーニングデータアーティファクトの識別を容易にする手法を提案する。
提案手法は,トレーニングデータのアーティファクトの発見に有効であることを示す。
我々は,これらの手法が実際にNLP研究者にとって有用かどうかを評価するために,小規模なユーザスタディを実施している。
論文 参考訳(メタデータ) (2021-07-01T09:26:13Z) - DAGA: Data Augmentation with a Generation Approach for Low-resource
Tagging Tasks [88.62288327934499]
線形化ラベル付き文に基づいて訓練された言語モデルを用いた新しい拡張手法を提案する。
本手法は, 教師付き設定と半教師付き設定の両方に適用可能である。
論文 参考訳(メタデータ) (2020-11-03T07:49:15Z) - Counterfactually-Augmented SNLI Training Data Does Not Yield Better
Generalization Than Unaugmented Data [27.738670027154555]
自然言語理解データのカウンターファクト拡張は、トレーニングデータの収集に有効な方法ではない。
本研究は、英語の自然言語推論データを用いて、モデル一般化とロバスト性をテストする。
論文 参考訳(メタデータ) (2020-10-09T18:44:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。