Removing Structured Noise with Diffusion Models
- URL: http://arxiv.org/abs/2302.05290v3
- Date: Tue, 17 Oct 2023 09:51:36 GMT
- Title: Removing Structured Noise with Diffusion Models
- Authors: Tristan S.W. Stevens, Hans van Gorp, Faik C. Meral, Junseob Shin,
Jason Yu, Jean-Luc Robert, Ruud J.G. van Sloun
- Abstract summary: We show that the powerful paradigm of posterior sampling with diffusion models can be extended to include rich, structured, noise models.
We demonstrate strong performance gains across various inverse problems with structured noise, outperforming competitive baselines.
This opens up new opportunities and relevant practical applications of diffusion modeling for inverse problems in the context of non-Gaussian measurement models.
- Score: 14.187153638386379
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Solving ill-posed inverse problems requires careful formulation of prior
beliefs over the signals of interest and an accurate description of their
manifestation into noisy measurements. Handcrafted signal priors based on e.g.
sparsity are increasingly replaced by data-driven deep generative models, and
several groups have recently shown that state-of-the-art score-based diffusion
models yield particularly strong performance and flexibility. In this paper, we
show that the powerful paradigm of posterior sampling with diffusion models can
be extended to include rich, structured, noise models. To that end, we propose
a joint conditional reverse diffusion process with learned scores for the noise
and signal-generating distribution. We demonstrate strong performance gains
across various inverse problems with structured noise, outperforming
competitive baselines that use normalizing flows and adversarial networks. This
opens up new opportunities and relevant practical applications of diffusion
modeling for inverse problems in the context of non-Gaussian measurement
models.
Related papers
- A Survey on Diffusion Models for Inverse Problems [110.6628926886398]
We provide an overview of methods that utilize pre-trained diffusion models to solve inverse problems without requiring further training.
We discuss specific challenges and potential solutions associated with using latent diffusion models for inverse problems.
arXiv Detail & Related papers (2024-09-30T17:34:01Z) - Conditional score-based diffusion models for solving inverse problems in mechanics [6.319616423658121]
We propose a framework to perform Bayesian inference using conditional score-based diffusion models.
Conditional score-based diffusion models are generative models that learn to approximate the score function of a conditional distribution.
We demonstrate the efficacy of the proposed approach on a suite of high-dimensional inverse problems in mechanics.
arXiv Detail & Related papers (2024-06-19T02:09:15Z) - Steerable Conditional Diffusion for Out-of-Distribution Adaptation in Medical Image Reconstruction [75.91471250967703]
We introduce a novel sampling framework called Steerable Conditional Diffusion.
This framework adapts the diffusion model, concurrently with image reconstruction, based solely on the information provided by the available measurement.
We achieve substantial enhancements in out-of-distribution performance across diverse imaging modalities.
arXiv Detail & Related papers (2023-08-28T08:47:06Z) - A Variational Perspective on Solving Inverse Problems with Diffusion
Models [101.831766524264]
Inverse tasks can be formulated as inferring a posterior distribution over data.
This is however challenging in diffusion models since the nonlinear and iterative nature of the diffusion process renders the posterior intractable.
We propose a variational approach that by design seeks to approximate the true posterior distribution.
arXiv Detail & Related papers (2023-05-07T23:00:47Z) - Information-Theoretic Diffusion [18.356162596599436]
Denoising diffusion models have spurred significant gains in density modeling and image generation.
We introduce a new mathematical foundation for diffusion models inspired by classic results in information theory.
arXiv Detail & Related papers (2023-02-07T23:03:07Z) - Diffusion Posterior Sampling for General Noisy Inverse Problems [50.873313752797124]
We extend diffusion solvers to handle noisy (non)linear inverse problems via approximation of the posterior sampling.
Our method demonstrates that diffusion models can incorporate various measurement noise statistics.
arXiv Detail & Related papers (2022-09-29T11:12:27Z) - Diffusion Models in Vision: A Survey [80.82832715884597]
A diffusion model is a deep generative model that is based on two stages, a forward diffusion stage and a reverse diffusion stage.
Diffusion models are widely appreciated for the quality and diversity of the generated samples, despite their known computational burdens.
arXiv Detail & Related papers (2022-09-10T22:00:30Z) - Conditional Diffusion Probabilistic Model for Speech Enhancement [101.4893074984667]
We propose a novel speech enhancement algorithm that incorporates characteristics of the observed noisy speech signal into the diffusion and reverse processes.
In our experiments, we demonstrate strong performance of the proposed approach compared to representative generative models.
arXiv Detail & Related papers (2022-02-10T18:58:01Z) - Come-Closer-Diffuse-Faster: Accelerating Conditional Diffusion Models
for Inverse Problems through Stochastic Contraction [31.61199061999173]
Diffusion models have a critical downside - they are inherently slow to sample from, needing few thousand steps of iteration to generate images from pure Gaussian noise.
We show that starting from Gaussian noise is unnecessary. Instead, starting from a single forward diffusion with better initialization significantly reduces the number of sampling steps in the reverse conditional diffusion.
New sampling strategy, dubbed ComeCloser-DiffuseFaster (CCDF), also reveals a new insight on how the existing feedforward neural network approaches for inverse problems can be synergistically combined with the diffusion models.
arXiv Detail & Related papers (2021-12-09T04:28:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.