論文の概要: The LuViRA Dataset: Measurement Description
- arxiv url: http://arxiv.org/abs/2302.05309v2
- Date: Wed, 17 Apr 2024 15:04:14 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-19 00:26:13.248860
- Title: The LuViRA Dataset: Measurement Description
- Title(参考訳): LuViRAデータセット:測定記述
- Authors: Ilayda Yaman, Guoda Tian, Martin Larsson, Patrik Persson, Michiel Sandra, Alexander Dürr, Erik Tegler, Nikhil Challa, Henrik Garde, Fredrik Tufvesson, Kalle Åström, Ove Edfors, Steffen Malkowsky, Liang Liu,
- Abstract要約: このデータセットには、Lund University Vision、Radio、Audio(LuViRA)データセットという、視覚、オーディオ、ラジオセンサーが含まれている。
このデータセットの主な目的は、ローカライゼーションタスクに最もよく使用されるセンサーを融合させる研究を可能にすることである。
- 参考スコア(独自算出の注目度): 41.58739817444644
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a dataset to evaluate localization algorithms, which utilizes vision, audio, and radio sensors: the Lund University Vision, Radio, and Audio (LuViRA) Dataset. The dataset includes RGB images, corresponding depth maps, IMU readings, channel response between a massive MIMO channel sounder and a user equipment, audio recorded by 12 microphones, and 0.5 mm accurate 6DoF pose ground truth. We synchronize these sensors to make sure that all data are recorded simultaneously. A camera, speaker, and transmit antenna are placed on top of a slowly moving service robot and 88 trajectories are recorded. Each trajectory includes 20 to 50 seconds of recorded sensor data and ground truth labels. The data from different sensors can be used separately or jointly to conduct localization tasks and a motion capture system is used to verify the results obtained by the localization algorithms. The main aim of this dataset is to enable research on fusing the most commonly used sensors for localization tasks. However, the full dataset or some parts of it can also be used for other research areas such as channel estimation, image classification, etc. Fusing sensor data can lead to increased localization accuracy and reliability, as well as decreased latency and power consumption. The created dataset will be made public at a later date.
- Abstract(参考訳): 本稿では,Lund University Vision, Radio, and Audio (LuViRA) Dataset という視覚, オーディオ, 無線センサを用いたローカライゼーションアルゴリズムの評価データセットを提案する。
データセットには、RGB画像、対応する深度マップ、IMU読み取り、巨大なMIMOチャネルサウンドとユーザ機器間のチャネル応答、12マイクロフォンによるオーディオ記録、0.5mm精度の6DoFの真理を呈する6DoFが含まれている。
これらのセンサーを同期させて、すべてのデータが同時に記録されるようにします。
ゆっくりと動くサービスロボットの上にカメラ、スピーカ、送信アンテナを設置し、88軌道を記録する。
各軌道は、記録されたセンサデータと地上の真実ラベルの20秒から50秒を含む。
異なるセンサからのデータを別々または共同でローカライズタスクに使用することができ、ローカライズアルゴリズムによって得られた結果を検証するためにモーションキャプチャシステムを使用する。
このデータセットの主な目的は、ローカライゼーションタスクに最もよく使用されるセンサーを融合させる研究を可能にすることである。
しかし、完全なデータセットやその一部は、チャネル推定や画像分類など、他の研究領域にも使用することができる。
ハウジングセンサデータにより、ローカライズ精度と信頼性が向上し、レイテンシや消費電力が低下する可能性がある。
生成されたデータセットは、後日公開される予定だ。
関連論文リスト
- MSSIDD: A Benchmark for Multi-Sensor Denoising [55.41612200877861]
我々は,マルチセンサSIDDデータセットという新しいベンチマークを導入する。これは,認知モデルのセンサ伝達性を評価するために設計された,最初の生ドメインデータセットである。
そこで本研究では,センサに不変な特徴を認知モデルで学習することのできるセンサ一貫性トレーニングフレームワークを提案する。
論文 参考訳(メタデータ) (2024-11-18T13:32:59Z) - DIDLM:A Comprehensive Multi-Sensor Dataset with Infrared Cameras, Depth Cameras, LiDAR, and 4D Millimeter-Wave Radar in Challenging Scenarios for 3D Mapping [7.050468075029598]
本研究では,屋内・屋外環境における3次元マッピングのための総合的マルチセンサ・データセットを提案する。
このデータセットは、赤外線カメラ、深度カメラ、LiDAR、および4Dミリ波レーダーからのデータで構成されている。
さまざまなSLAMアルゴリズムを使用してデータセットを処理し、異なるシナリオにおけるアルゴリズムのパフォーマンスの違いを明らかにする。
論文 参考訳(メタデータ) (2024-04-15T09:49:33Z) - MTMMC: A Large-Scale Real-World Multi-Modal Camera Tracking Benchmark [63.878793340338035]
マルチターゲットマルチカメラトラッキングは、複数のカメラからのビデオストリームを使用して個人を特定し、追跡する重要なタスクである。
このタスクの既存のデータセットは、制御されたカメラネットワーク設定内で合成または人工的に構築される。
我々は16台のマルチモーダルカメラで2つの異なる環境でキャプチャされた長いビデオシーケンスを含む実世界の大規模データセットであるMTMMCを紹介する。
論文 参考訳(メタデータ) (2024-03-29T15:08:37Z) - GDTM: An Indoor Geospatial Tracking Dataset with Distributed Multimodal
Sensors [9.8714071146137]
GDTMは、分散マルチモーダルセンサと再構成可能なセンサノード配置を備えた、マルチモーダルオブジェクトトラッキングのための9時間のデータセットである。
我々のデータセットは、マルチモーダルデータ処理のためのアーキテクチャの最適化など、いくつかの研究課題の探索を可能にする。
論文 参考訳(メタデータ) (2024-02-21T21:24:57Z) - LuViRA Dataset Validation and Discussion: Comparing Vision, Radio, and Audio Sensors for Indoor Localization [8.296768815428441]
本稿では,視覚,ラジオ,および音声に基づくローカライゼーションアルゴリズムのユニークな比較分析と評価を行う。
我々は、最近発表されたLund University Vision, Radio, and Audio (LuViRA)データセットを用いて、前述のセンサーの最初のベースラインを作成します。
屋内のローカライゼーションタスクに各センサを使用する際の課題をいくつか挙げる。
論文 参考訳(メタデータ) (2023-09-06T12:57:00Z) - UnLoc: A Universal Localization Method for Autonomous Vehicles using
LiDAR, Radar and/or Camera Input [51.150605800173366]
UnLocは、全ての気象条件におけるマルチセンサー入力によるローカライズのための、新しい統一型ニューラルネットワークアプローチである。
本手法は,Oxford Radar RobotCar,Apollo SouthBay,Perth-WAの各データセットで広く評価されている。
論文 参考訳(メタデータ) (2023-07-03T04:10:55Z) - Multimodal Dataset from Harsh Sub-Terranean Environment with Aerosol
Particles for Frontier Exploration [55.41644538483948]
本稿では, エアロゾル粒子を用いた過酷で非構造的な地下環境からのマルチモーダルデータセットを提案する。
ロボットオペレーティング・システム(ROS)フォーマットのすべてのオンボードセンサーから、同期された生データ計測を含んでいる。
本研究の焦点は、時間的・空間的なデータの多様性を捉えることだけでなく、取得したデータに厳しい条件が及ぼす影響を示すことである。
論文 参考訳(メタデータ) (2023-04-27T20:21:18Z) - TUM-VIE: The TUM Stereo Visual-Inertial Event Dataset [50.8779574716494]
イベントカメラはバイオインスパイアされた視覚センサーで、ピクセルごとの明るさの変化を測定する。
これらは、低レイテンシ、高ダイナミックレンジ、高時間分解能、低消費電力など、従来のフレームベースのカメラよりも多くの利点を提供する。
イベントカメラを用いた3次元認識・ナビゲーションアルゴリズムの開発を促進するため,TUM-VIEデータセットを提案する。
論文 参考訳(メタデータ) (2021-08-16T19:53:56Z) - A Multi-spectral Dataset for Evaluating Motion Estimation Systems [7.953825491774407]
本稿では,マルチスペクトル運動推定システムの性能評価のための新しいデータセットを提案する。
すべてのシーケンスはハンドヘルドマルチスペクトルデバイスから記録される。
深度画像はMicrosoft Kinect2でキャプチャされ、モダリティ間のステレオマッチングを学習するメリットがある。
論文 参考訳(メタデータ) (2020-07-01T17:11:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。