論文の概要: Towards Text-based Human Search and Approach with an Intelligent Robot
Dog
- arxiv url: http://arxiv.org/abs/2302.05324v1
- Date: Fri, 10 Feb 2023 15:35:24 GMT
- ステータス: 処理完了
- システム内更新日: 2023-02-13 15:23:54.984812
- Title: Towards Text-based Human Search and Approach with an Intelligent Robot
Dog
- Title(参考訳): 知的ロボット犬によるテキストに基づく人間探索とアプローチ
- Authors: Jeongeun Park, Jefferson Silveria, Matthew Pan, and Sungjoon Choi
- Abstract要約: 我々は、TEXシステム(SOCRATES)に基づく人間に接近するロボットのためのSOCraticモデルを提案する。
本稿では,まず,言語領域の大規模事前学習モデルを接続して,下流課題を解決するヒューマンサーチソクラティックモデルを提案する。
そこで本研究では,人間に接近するターゲット音響ロボットの動きを生成するためのハイブリッド学習ベースのフレームワークを提案する。
- 参考スコア(独自算出の注目度): 6.168521568443759
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we propose a SOCratic model for Robots Approaching humans
based on TExt System (SOCRATES) focusing on the human search and approach based
on free-form textual description; the robot first searches for the target user,
then the robot proceeds to approach in a human-friendly manner. In particular,
textual descriptions are composed of appearance (e.g., wearing white shirts
with black hair) and location clues (e.g., is a student who works with robots).
We initially present a Human Search Socratic Model that connects large
pre-trained models in the language domain to solve the downstream task, which
is searching for the target person based on textual descriptions. Then, we
propose a hybrid learning-based framework for generating target-cordial robotic
motion to approach a person, consisting of a learning-from-demonstration module
and a knowledge distillation module. We validate the proposed searching module
via simulation using a virtual mobile robot as well as through real-world
experiments involving participants and the Boston Dynamics Spot robot.
Furthermore, we analyze the properties of the proposed approaching framework
with human participants based on the Robotic Social Attributes Scale (RoSAS)
- Abstract(参考訳): 本稿では、自由形式のテキスト記述に基づく人間の検索とアプローチに焦点を当てたTEXシステム(SOCRATES)に基づく人間接近ロボットのためのSOCraticモデルを提案する。
特に、文章の記述は外観(例えば、黒い髪の白いシャツ)と位置情報(例えば、ロボットを扱う学生)で構成されている。
本稿ではまず,言語領域における大規模事前学習モデルと,テキスト記述に基づいて対象者を探索するダウンストリームタスクを接続するHuman Search Socratic Modelを提案する。
そこで,本研究では,目標音場ロボットの動作を生成するためのハイブリッド学習フレームワークを提案し,実験モジュールと知識蒸留モジュールからなる人物にアプローチする。
仮想移動ロボットを用いたシミュレーションと,参加者とBoston Dynamics Spotロボットによる実世界の実験により,提案した探索モジュールを検証した。
さらに,ロボット社会属性尺度 (robotic social attribute scale,rosas) に基づいて,人間参加型フレームワークの特性を解析した。
関連論文リスト
- HumanoidBench: Simulated Humanoid Benchmark for Whole-Body Locomotion and Manipulation [50.616995671367704]
そこで本研究では,人型ロボットが器用な手を備えた,高次元シミュレーション型ロボット学習ベンチマークHumanoidBenchを提案する。
その結果,現在最先端の強化学習アルゴリズムがほとんどのタスクに支障をきたすのに対して,階層的学習アプローチはロバストな低レベルポリシーに支えられた場合,優れた性能を達成できることがわかった。
論文 参考訳(メタデータ) (2024-03-15T17:45:44Z) - PREDILECT: Preferences Delineated with Zero-Shot Language-based
Reasoning in Reinforcement Learning [2.7387720378113554]
ロボット学習の新たな分野として,嗜好に基づく強化学習(RL)が出現している。
我々は、人間が提供するテキストから大言語モデル(LLM)のゼロショット機能を利用する。
シミュレーションシナリオとユーザスタディの両方において、フィードバックとその意味を分析することによって、作業の有効性を明らかにする。
論文 参考訳(メタデータ) (2024-02-23T16:30:05Z) - ImitationNet: Unsupervised Human-to-Robot Motion Retargeting via Shared Latent Space [9.806227900768926]
本稿では,ロボットの動きに対する新しいディープラーニング手法を提案する。
本手法では,新しいロボットへの翻訳を容易にする,人間とロボットのペアデータを必要としない。
我々のモデルは、効率と精度の観点から、人間とロボットの類似性に関する既存の研究よりも優れています。
論文 参考訳(メタデータ) (2023-09-11T08:55:04Z) - Learning Video-Conditioned Policies for Unseen Manipulation Tasks [83.2240629060453]
ビデオ条件付きポリシー学習は、以前は目に見えないタスクの人間のデモをロボット操作スキルにマッピングする。
我々は,現在のシーン観察と対象課題のビデオから適切なアクションを生成するためのポリシーを学習する。
われわれは,多タスクロボット操作環境の課題と,技術面における性能の面から,そのアプローチを検証した。
論文 参考訳(メタデータ) (2023-05-10T16:25:42Z) - Open-World Object Manipulation using Pre-trained Vision-Language Models [72.87306011500084]
ロボットが人からの指示に従うためには、人間の語彙の豊かな意味情報を繋げなければならない。
我々は、事前学習された視覚言語モデルを利用して、オブジェクト識別情報を抽出するシンプルなアプローチを開発する。
実際の移動マニピュレータにおける様々な実験において、MOOはゼロショットを様々な新しいオブジェクトカテゴリや環境に一般化する。
論文 参考訳(メタデータ) (2023-03-02T01:55:10Z) - Zero-Shot Robot Manipulation from Passive Human Videos [59.193076151832145]
我々は,人間の映像からエージェント非依存の行動表現を抽出するフレームワークを開発した。
我々の枠組みは、人間の手の動きを予測することに基づいている。
トレーニングされたモデルゼロショットを物理ロボット操作タスクにデプロイする。
論文 参考訳(メタデータ) (2023-02-03T21:39:52Z) - Signs of Language: Embodied Sign Language Fingerspelling Acquisition
from Demonstrations for Human-Robot Interaction [1.0166477175169308]
本稿では,ビデオ例からデキスタスモータの模倣を学習する手法を提案する。
まず,関節に1つのアクチュエータを備えたロボットハンドのURDFモデルを構築した。
トレーニング済みのディープビジョンモデルを利用して、RGBビデオから手の3Dポーズを抽出する。
論文 参考訳(メタデータ) (2022-09-12T10:42:26Z) - Human-to-Robot Imitation in the Wild [50.49660984318492]
本研究では,第三者の視点からの学習を中心に,効率的なワンショットロボット学習アルゴリズムを提案する。
実世界における20種類の操作タスクを含む,ワンショットの一般化と成功を示す。
論文 参考訳(メタデータ) (2022-07-19T17:59:59Z) - Joint Mind Modeling for Explanation Generation in Complex Human-Robot
Collaborative Tasks [83.37025218216888]
本稿では,人間とロボットのコラボレーションにおいて,人間のようなコミュニケーションを実現するための新しい説明可能なAI(XAI)フレームワークを提案する。
ロボットは、人間のユーザの階層的なマインドモデルを構築し、コミュニケーションの一形態として自身のマインドの説明を生成する。
その結果,提案手法はロボットの協調動作性能とユーザ認識を著しく向上させることがわかった。
論文 参考訳(メタデータ) (2020-07-24T23:35:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。