Femtosecond Photophysics of Molecular Polaritons
- URL: http://arxiv.org/abs/2302.05670v1
- Date: Sat, 11 Feb 2023 12:04:03 GMT
- Title: Femtosecond Photophysics of Molecular Polaritons
- Authors: Francesca Fassioli, Kyu Hyung Park, Sarah E. Bard, Gregory D. Scholes
- Abstract summary: Molecular polaritons are hybrid states of photonic and molecular character that form when molecules strongly interact with light.
We focus on the collective aspects of strongly coupled molecular systems and how this pertains to the dynamical response of such systems.
We discuss how the ultrafast time and spectral resolution make pump-probe spectroscopy an ideal tool to reveal the energy transfer pathways from polariton states to other molecular states of functional interest.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Molecular polaritons are hybrid states of photonic and molecular character
that form when molecules strongly interact with light. Strong coupling tunes
energy levels and importantly, can modify molecular properties (e.g.
photoreaction rates) opening an avenue for novel polariton chemistry. In this
perspective, we focus on the collective aspects of strongly coupled molecular
systems and how this pertains to the dynamical response of such systems, which
though of key importance for attaining modified function under polariton
formation, is still not well understood. We discuss how the ultrafast time and
spectral resolution make pump-probe spectroscopy an ideal tool to reveal the
energy transfer pathways from polariton states to other molecular states of
functional interest. Finally, we illustrate how analyzing the free (rather than
electronic) energy structure in molecular polariton systems may provide new
clues into how energy flows and thus how strong coupling may be exploited.
Related papers
- Atom-Motif Contrastive Transformer for Molecular Property Prediction [68.85399466928976]
Graph Transformer (GT) models have been widely used in the task of Molecular Property Prediction (MPP)
We propose a novel Atom-Motif Contrastive Transformer (AMCT) which explores atom-level interactions and considers motif-level interactions.
Our proposed AMCT is extensively evaluated on seven popular benchmark datasets, and both quantitative and qualitative results firmly demonstrate its effectiveness.
arXiv Detail & Related papers (2023-10-11T10:03:10Z) - Efficient Reduction of Casimir Forces by Self-assembled Bio-molecular
Thin Films [62.997667081978825]
Casimir forces, related to London-van der Waals forces, arise if the spectrum of electromagnetic fluctuations is restricted by boundaries.
We experimentally investigate the influence of self-assembled molecular bio and organic thin films on the Casimir force between a plate and a sphere.
We find that molecular thin films, despite being a mere few nanometers thick, reduce the Casimir force by up to 14%.
arXiv Detail & Related papers (2023-06-28T13:44:07Z) - MUDiff: Unified Diffusion for Complete Molecule Generation [104.7021929437504]
We present a new model for generating a comprehensive representation of molecules, including atom features, 2D discrete molecule structures, and 3D continuous molecule coordinates.
We propose a novel graph transformer architecture to denoise the diffusion process.
Our model is a promising approach for designing stable and diverse molecules and can be applied to a wide range of tasks in molecular modeling.
arXiv Detail & Related papers (2023-04-28T04:25:57Z) - Rydberg atom-enabled spectroscopy of polar molecules via F\"orster
resonance energy transfer [0.0]
Rydberg atom-enabled spectroscopy is feasible with current experimental technology.
Non-radiative energy transfer between a Rydberg atom and a polar molecule can be controlled by a DC electric field.
arXiv Detail & Related papers (2022-05-09T14:31:12Z) - Dynamic of Single Molecules in Collective Light-Matter States from First
Principles [0.0]
coherent interaction of a large collection of molecules with a common photonic mode results in strong light-matter coupling.
I introduce a simple approach to capture the collective nature while retaining the full ab initio representation of single molecules.
I illustrate that the influence of collective strong coupling on chemical reactions features a nontrivial dependence on the number of emitters.
arXiv Detail & Related papers (2022-04-04T15:58:04Z) - Theoretical Challenges in Polaritonic Chemistry [0.0]
Polaritonic chemistry exploits strong light-matter coupling between molecules and confined electromagnetic field modes.
In wavelength-scale optical cavities light-matter interaction is ruled by collective effects.
Plasmonic subwavelength nanocavities allow even single molecules to reach strong coupling.
arXiv Detail & Related papers (2021-11-16T11:50:19Z) - Relativistic aspects of orbital and magnetic anisotropies in the
chemical bonding and structure of lanthanide molecules [60.17174832243075]
We study the electronic and ro-vibrational states of heavy homonuclear lanthanide Er2 and Tm2 molecules by applying state-of-the-art relativistic methods.
We were able to obtain reliable spin-orbit and correlation-induced splittings between the 91 Er2 and 36 Tm2 electronic potentials dissociating to two ground-state atoms.
arXiv Detail & Related papers (2021-07-06T15:34:00Z) - Superreaction: the collective enhancement of a reaction rate by
molecular polaritons in the presence of energy fluctuations [0.0]
Molecular polaritons are hybrid states of light and matter formed by the strong coupling between molecular electronic or vibrational excitations and an optical cavity.
We show that, by exploiting the collective character of molecular polaritons, a superreaction can be realized.
The underlying mechanism is shown to be the enhancement of quantum coherence between different donors as the light-matter interaction becomes stronger.
arXiv Detail & Related papers (2021-03-30T08:46:37Z) - Dynamical Strengthening of Covalent and Non-Covalent Molecular
Interactions by Nuclear Quantum Effects at Finite Temperature [58.999762016297865]
Nuclear quantum effects (NQE) tend to generate delocalized molecular dynamics.
NQE often enhance electronic interactions and, in turn, can result in dynamical molecular stabilization at finite temperature.
Our findings yield new insights into the versatile role of nuclear quantum fluctuations in molecules and materials.
arXiv Detail & Related papers (2020-06-18T14:30:29Z) - Nondestructive dispersive imaging of rotationally excited ultracold
molecules [0.0]
We present and theoretically analyze a general scheme for dispersive imaging of electronic ground-state molecules.
Our technique relies on the intrinsic anisotropy of excited molecular rotational states to generate optical birefringence.
arXiv Detail & Related papers (2020-06-05T14:36:10Z) - Quantum coherent spin-electric control in a molecular nanomagnet at
clock transitions [57.50861918173065]
Electrical control of spins at the nanoscale offers architectural advantages in spintronics.
Recent demonstrations of electric-field (E-field) sensitivities in molecular spin materials are tantalising.
E-field sensitivities reported so far are rather weak, prompting the question of how to design molecules with stronger spin-electric couplings.
arXiv Detail & Related papers (2020-05-03T09:27:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.