Dynamical Strengthening of Covalent and Non-Covalent Molecular
Interactions by Nuclear Quantum Effects at Finite Temperature
- URL: http://arxiv.org/abs/2006.10578v1
- Date: Thu, 18 Jun 2020 14:30:29 GMT
- Title: Dynamical Strengthening of Covalent and Non-Covalent Molecular
Interactions by Nuclear Quantum Effects at Finite Temperature
- Authors: Huziel E. Sauceda, Valentin Vassilev-Galindo, Stefan Chmiela,
Klaus-Robert M\"uller, Alexandre Tkatchenko
- Abstract summary: Nuclear quantum effects (NQE) tend to generate delocalized molecular dynamics.
NQE often enhance electronic interactions and, in turn, can result in dynamical molecular stabilization at finite temperature.
Our findings yield new insights into the versatile role of nuclear quantum fluctuations in molecules and materials.
- Score: 58.999762016297865
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Nuclear quantum effects (NQE) tend to generate delocalized molecular dynamics
due to the inclusion of the zero point energy and its coupling with the
anharmonicities in interatomic interactions. Here, we present evidence that NQE
often enhance electronic interactions and, in turn, can result in dynamical
molecular stabilization at finite temperature. The underlying physical
mechanism promoted by NQE depends on the particular interaction under
consideration. First, the effective reduction of interatomic distances between
functional groups within a molecule can enhance the $n\to\pi^*$ interaction by
increasing the overlap between molecular orbitals or by strengthening
electrostatic interactions between neighboring charge densities. Second, NQE
can localize methyl rotors by temporarily changing molecular bond orders and
leading to the emergence of localized transient rotor states. Third, for
noncovalent van der Waals interactions the strengthening comes from the
increase of the polarizability given the expanded average interatomic distances
induced by NQE. The implications of these boosted interactions include
counterintuitive hydroxyl--hydroxyl bonding, hindered methyl rotor dynamics,
and molecular stiffening which generates smoother free-energy surfaces. Our
findings yield new insights into the versatile role of nuclear quantum
fluctuations in molecules and materials.
Related papers
- Rotational-state dependence of interactions between polar molecules [0.0]
We show that where molecules are in rotational states that differ by more than one quantum, they exhibit repulsive van der Waals interactions.
At temperatures below a millikelvin, this effect can reduce collisional loss by multiple orders of magnitude.
These repulsive interactions lead to applications in quantum simulation and impurity physics with ultracold polar molecules.
arXiv Detail & Related papers (2024-01-11T14:59:43Z) - Quantum dynamics of molecular ensembles coupled with quantum light:
Counter-rotating interactions as an essential component [0.0]
We study the impact of the rotating-wave approximation on the quantum dynamics of multiple molecules.
In the near-field zone, the reduction of inter-molecule interaction can reach up to 50 percent.
It is revealed that the rotating-wave approximation can profoundly affect the dynamics of the molecules in both strong and weak coupling regimes.
arXiv Detail & Related papers (2023-07-27T06:38:44Z) - Relativistic aspects of orbital and magnetic anisotropies in the
chemical bonding and structure of lanthanide molecules [60.17174832243075]
We study the electronic and ro-vibrational states of heavy homonuclear lanthanide Er2 and Tm2 molecules by applying state-of-the-art relativistic methods.
We were able to obtain reliable spin-orbit and correlation-induced splittings between the 91 Er2 and 36 Tm2 electronic potentials dissociating to two ground-state atoms.
arXiv Detail & Related papers (2021-07-06T15:34:00Z) - Anisotropic electron-nuclear interactions in a rotating quantum spin
bath [55.41644538483948]
Spin-bath interactions are strongly anisotropic, and rapid physical rotation has long been used in solid-state nuclear magnetic resonance.
We show that the interaction between electron spins of nitrogen-vacancy centers and a bath of $13$C nuclear spins introduces decoherence into the system.
Our findings offer new insights into the use of physical rotation for quantum control with implications for quantum systems having motional and rotational degrees of freedom that are not fixed.
arXiv Detail & Related papers (2021-05-16T06:15:00Z) - Molecular Interactions Induced by a Static Electric Field in Quantum
Mechanics and Quantum Electrodynamics [68.98428372162448]
We study the interaction between two neutral atoms or molecules subject to a uniform static electric field.
Our focus is to understand the interplay between leading contributions to field-induced electrostatics/polarization and dispersion interactions.
arXiv Detail & Related papers (2021-03-30T14:45:30Z) - Chemical tuning of spin clock transitions in molecular monomers based on
nuclear spin-free Ni(II) [52.259804540075514]
We report the existence of a sizeable quantum tunnelling splitting between the two lowest electronic spin levels of mononuclear Ni complexes.
The level anti-crossing, or magnetic clock transition, associated with this gap has been directly monitored by heat capacity experiments.
The comparison of these results with those obtained for a Co derivative, for which tunnelling is forbidden by symmetry, shows that the clock transition leads to an effective suppression of intermolecular spin-spin interactions.
arXiv Detail & Related papers (2021-03-04T13:31:40Z) - Magnetic properties and quench dynamics of two interacting ultracold
molecules in a trap [0.0]
We investigate the magnetic properties and nonequilibrium dynamics of two interacting ultracold polar and paramagnetic molecules in a harmonic trap in external electric and magnetic fields.
The molecules interact via a multichannel two-body contact potential, incorporating the short-range anisotropy of intermolecular interactions.
arXiv Detail & Related papers (2020-10-22T17:35:46Z) - Dipolar evaporation of reactive molecules to below the Fermi temperature [2.9989215527241453]
Inelastic losses in molecular collisions have greatly hampered the engineering of low-entropy molecular systems.
Here, we use an external electric field along with optical lattice confinement to create a two-dimensional (2D) Fermi gas of spin-polarized potassium-rubidium (KRb) polar molecules.
Direct thermalization among the molecules in the trap leads to efficient dipolar cooling, yielding a rapid increase in phase-space density.
arXiv Detail & Related papers (2020-07-23T22:02:59Z) - Effects of Conical Intersections on Hyperfine Quenching of Hydroxyl OH
in collision with an ultracold Sr atom [62.60678272919008]
We report on ultracold collision dynamics of the hydroxyl free-radical OH with Sr atoms leading to quenching of OH hyperfine states.
Our quantum-mechanical calculations of this process reveal that quenching is efficient due to anomalous molecular dynamics in the vicinity of the conical intersection.
arXiv Detail & Related papers (2020-06-26T23:27:25Z) - Molecule-photon interactions in phononic environments [0.0879626117219674]
Liquid quantum optical systems can interface photons, electronic degrees of freedom, localized mechanical vibrations and phonons.
In particular, the strong vibronic interaction between electrons and nuclear motion in a molecule resembles the optomechanical radiation pressure Hamiltonian.
We take here an open quantum system approach to the non-equilibrium dynamics of molecules embedded in a crystal.
arXiv Detail & Related papers (2019-12-05T15:11:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.