Graph Neural Network-Inspired Kernels for Gaussian Processes in
Semi-Supervised Learning
- URL: http://arxiv.org/abs/2302.05828v1
- Date: Sun, 12 Feb 2023 01:07:56 GMT
- Title: Graph Neural Network-Inspired Kernels for Gaussian Processes in
Semi-Supervised Learning
- Authors: Zehao Niu, Mihai Anitescu, Jie Chen
- Abstract summary: Graph neural networks (GNNs) emerged recently as a promising class of models for graph-structured data in semi-supervised learning.
We introduce this inductive bias into GPs to improve their predictive performance for graph-structured data.
We show that these graph-based kernels lead to competitive classification and regression performance, as well as advantages in time, compared with the respective GNNs.
- Score: 4.644263115284322
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Gaussian processes (GPs) are an attractive class of machine learning models
because of their simplicity and flexibility as building blocks of more complex
Bayesian models. Meanwhile, graph neural networks (GNNs) emerged recently as a
promising class of models for graph-structured data in semi-supervised learning
and beyond. Their competitive performance is often attributed to a proper
capturing of the graph inductive bias. In this work, we introduce this
inductive bias into GPs to improve their predictive performance for
graph-structured data. We show that a prominent example of GNNs, the graph
convolutional network, is equivalent to some GP when its layers are infinitely
wide; and we analyze the kernel universality and the limiting behavior in
depth. We further present a programmable procedure to compose covariance
kernels inspired by this equivalence and derive example kernels corresponding
to several interesting members of the GNN family. We also propose a
computationally efficient approximation of the covariance matrix for scalable
posterior inference with large-scale data. We demonstrate that these
graph-based kernels lead to competitive classification and regression
performance, as well as advantages in computation time, compared with the
respective GNNs.
Related papers
- Generalization of Graph Neural Networks is Robust to Model Mismatch [84.01980526069075]
Graph neural networks (GNNs) have demonstrated their effectiveness in various tasks supported by their generalization capabilities.
In this paper, we examine GNNs that operate on geometric graphs generated from manifold models.
Our analysis reveals the robustness of the GNN generalization in the presence of such model mismatch.
arXiv Detail & Related papers (2024-08-25T16:00:44Z) - Neural Tangent Kernels Motivate Graph Neural Networks with
Cross-Covariance Graphs [94.44374472696272]
We investigate NTKs and alignment in the context of graph neural networks (GNNs)
Our results establish the theoretical guarantees on the optimality of the alignment for a two-layer GNN.
These guarantees are characterized by the graph shift operator being a function of the cross-covariance between the input and the output data.
arXiv Detail & Related papers (2023-10-16T19:54:21Z) - Label Deconvolution for Node Representation Learning on Large-scale
Attributed Graphs against Learning Bias [75.44877675117749]
We propose an efficient label regularization technique, namely Label Deconvolution (LD), to alleviate the learning bias by a novel and highly scalable approximation to the inverse mapping of GNNs.
Experiments demonstrate LD significantly outperforms state-of-the-art methods on Open Graph datasets Benchmark.
arXiv Detail & Related papers (2023-09-26T13:09:43Z) - Graph Kernel Neural Networks [53.91024360329517]
We propose to use graph kernels, i.e. kernel functions that compute an inner product on graphs, to extend the standard convolution operator to the graph domain.
This allows us to define an entirely structural model that does not require computing the embedding of the input graph.
Our architecture allows to plug-in any type of graph kernels and has the added benefit of providing some interpretability.
arXiv Detail & Related papers (2021-12-14T14:48:08Z) - Adaptive Kernel Graph Neural Network [21.863238974404474]
Graph neural networks (GNNs) have demonstrated great success in representation learning for graph-structured data.
In this paper, we propose a novel framework - i.e., namely Adaptive Kernel Graph Neural Network (AKGNN)
AKGNN learns to adapt to the optimal graph kernel in a unified manner at the first attempt.
Experiments are conducted on acknowledged benchmark datasets and promising results demonstrate the outstanding performance of our proposed AKGNN.
arXiv Detail & Related papers (2021-12-08T20:23:58Z) - Graph Neural Networks with Parallel Neighborhood Aggregations for Graph
Classification [14.112444998191698]
We focus on graph classification using a graph neural network (GNN) model that precomputes the node features using a bank of neighborhood aggregation graph operators arranged in parallel.
These GNN models have a natural advantage of reduced training and inference time due to the precomputations.
We demonstrate via numerical experiments that the developed model achieves state-of-the-art performance on many diverse real-world datasets.
arXiv Detail & Related papers (2021-11-22T19:19:40Z) - Infinitely Wide Graph Convolutional Networks: Semi-supervised Learning
via Gaussian Processes [144.6048446370369]
Graph convolutional neural networks(GCNs) have recently demonstrated promising results on graph-based semi-supervised classification.
We propose a GP regression model via GCNs(GPGC) for graph-based semi-supervised learning.
We conduct extensive experiments to evaluate GPGC and demonstrate that it outperforms other state-of-the-art methods.
arXiv Detail & Related papers (2020-02-26T10:02:32Z) - Embedding Graph Auto-Encoder for Graph Clustering [90.8576971748142]
Graph auto-encoder (GAE) models are based on semi-supervised graph convolution networks (GCN)
We design a specific GAE-based model for graph clustering to be consistent with the theory, namely Embedding Graph Auto-Encoder (EGAE)
EGAE consists of one encoder and dual decoders.
arXiv Detail & Related papers (2020-02-20T09:53:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.