Generalization of Graph Neural Networks is Robust to Model Mismatch
- URL: http://arxiv.org/abs/2408.13878v2
- Date: Tue, 10 Sep 2024 16:28:24 GMT
- Title: Generalization of Graph Neural Networks is Robust to Model Mismatch
- Authors: Zhiyang Wang, Juan Cervino, Alejandro Ribeiro,
- Abstract summary: Graph neural networks (GNNs) have demonstrated their effectiveness in various tasks supported by their generalization capabilities.
In this paper, we examine GNNs that operate on geometric graphs generated from manifold models.
Our analysis reveals the robustness of the GNN generalization in the presence of such model mismatch.
- Score: 84.01980526069075
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph neural networks (GNNs) have demonstrated their effectiveness in various tasks supported by their generalization capabilities. However, the current analysis of GNN generalization relies on the assumption that training and testing data are independent and identically distributed (i.i.d). This imposes limitations on the cases where a model mismatch exists when generating testing data. In this paper, we examine GNNs that operate on geometric graphs generated from manifold models, explicitly focusing on scenarios where there is a mismatch between manifold models generating training and testing data. Our analysis reveals the robustness of the GNN generalization in the presence of such model mismatch. This indicates that GNNs trained on graphs generated from a manifold can still generalize well to unseen nodes and graphs generated from a mismatched manifold. We attribute this mismatch to both node feature perturbations and edge perturbations within the generated graph. Our findings indicate that the generalization gap decreases as the number of nodes grows in the training graph while increasing with larger manifold dimension as well as larger mismatch. Importantly, we observe a trade-off between the generalization of GNNs and the capability to discriminate high-frequency components when facing a model mismatch. The most important practical consequence of this analysis is to shed light on the filter design of generalizable GNNs robust to model mismatch. We verify our theoretical findings with experiments on multiple real-world datasets.
Related papers
- Graph neural networks and non-commuting operators [4.912318087940015]
We develop a limit theory of graphon-tuple neural networks and use it to prove a universal transferability theorem.
Our theoretical results extend well-known transferability theorems for GNNs to the case of several simultaneous graphs.
We derive a training procedure that provably enforces the stability of the resulting model.
arXiv Detail & Related papers (2024-11-06T21:17:14Z) - Generalization of Geometric Graph Neural Networks [84.01980526069075]
We study the generalization capabilities of geometric graph neural networks (GNNs)
We prove a generalization gap between the optimal empirical risk and the optimal statistical risk of this GNN.
The most important observation is that the generalization capability can be realized with one large graph instead of being limited to the size of the graph as in previous results.
arXiv Detail & Related papers (2024-09-08T18:55:57Z) - A Manifold Perspective on the Statistical Generalization of Graph Neural Networks [84.01980526069075]
We take a manifold perspective to establish the statistical generalization theory of GNNs on graphs sampled from a manifold in the spectral domain.
We prove that the generalization bounds of GNNs decrease linearly with the size of the graphs in the logarithmic scale, and increase linearly with the spectral continuity constants of the filter functions.
arXiv Detail & Related papers (2024-06-07T19:25:02Z) - Learning to Reweight for Graph Neural Network [63.978102332612906]
Graph Neural Networks (GNNs) show promising results for graph tasks.
Existing GNNs' generalization ability will degrade when there exist distribution shifts between testing and training graph data.
We propose a novel nonlinear graph decorrelation method, which can substantially improve the out-of-distribution generalization ability.
arXiv Detail & Related papers (2023-12-19T12:25:10Z) - Towards Better Generalization with Flexible Representation of
Multi-Module Graph Neural Networks [0.27195102129094995]
We use a random graph generator to investigate how the graph size and structural properties affect the predictive performance of GNNs.
We present specific evidence that the average node degree is a key feature in determining whether GNNs can generalize to unseen graphs.
We propose a multi- module GNN framework that allows the network to adapt flexibly to new graphs by generalizing a single canonical nonlinear transformation over aggregated inputs.
arXiv Detail & Related papers (2022-09-14T12:13:59Z) - Generalizing Graph Neural Networks on Out-Of-Distribution Graphs [51.33152272781324]
Graph Neural Networks (GNNs) are proposed without considering the distribution shifts between training and testing graphs.
In such a setting, GNNs tend to exploit subtle statistical correlations existing in the training set for predictions, even though it is a spurious correlation.
We propose a general causal representation framework, called StableGNN, to eliminate the impact of spurious correlations.
arXiv Detail & Related papers (2021-11-20T18:57:18Z) - The Surprising Power of Graph Neural Networks with Random Node
Initialization [54.4101931234922]
Graph neural networks (GNNs) are effective models for representation learning on relational data.
Standard GNNs are limited in their expressive power, as they cannot distinguish beyond the capability of the Weisfeiler-Leman graph isomorphism.
In this work, we analyze the expressive power of GNNs with random node (RNI)
We prove that these models are universal, a first such result for GNNs not relying on computationally demanding higher-order properties.
arXiv Detail & Related papers (2020-10-02T19:53:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.