論文の概要: Vector Quantized Wasserstein Auto-Encoder
- arxiv url: http://arxiv.org/abs/2302.05917v1
- Date: Sun, 12 Feb 2023 13:51:36 GMT
- ステータス: 処理完了
- システム内更新日: 2023-02-14 17:48:09.867282
- Title: Vector Quantized Wasserstein Auto-Encoder
- Title(参考訳): ベクトル量子化ワッサースタインオートエンコーダ
- Authors: Tung-Long Vuong, Trung Le, He Zhao, Chuanxia Zheng, Mehrtash Harandi,
Jianfei Cai, Dinh Phung
- Abstract要約: 生成的視点から深層離散表現を学習する。
我々は,コードワード列上の離散分布を付与し,コードワード列上の分布をデータ分布に伝達する決定論的デコーダを学習する。
WS 距離のクラスタリングの観点と結びつけて,より優れた,より制御可能なクラスタリングソリューションを実現するための,さらなる理論を開発しています。
- 参考スコア(独自算出の注目度): 57.29764749855623
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Learning deep discrete latent presentations offers a promise of better
symbolic and summarized abstractions that are more useful to subsequent
downstream tasks. Inspired by the seminal Vector Quantized Variational
Auto-Encoder (VQ-VAE), most of work in learning deep discrete representations
has mainly focused on improving the original VQ-VAE form and none of them has
studied learning deep discrete representations from the generative viewpoint.
In this work, we study learning deep discrete representations from the
generative viewpoint. Specifically, we endow discrete distributions over
sequences of codewords and learn a deterministic decoder that transports the
distribution over the sequences of codewords to the data distribution via
minimizing a WS distance between them. We develop further theories to connect
it with the clustering viewpoint of WS distance, allowing us to have a better
and more controllable clustering solution. Finally, we empirically evaluate our
method on several well-known benchmarks, where it achieves better qualitative
and quantitative performances than the other VQ-VAE variants in terms of the
codebook utilization and image reconstruction/generation.
- Abstract(参考訳): 深い離散的な潜伏的なプレゼンテーションを学ぶことは、より優れたシンボリックで要約された抽象化を提供する。
量子化変分オートエンコーダ(VQ-VAE)にインスパイアされた深部離散表現の学習の多くは、元々のVQ-VAE形式の改善に重点を置いており、生成的視点から深部離散表現を学ぶことはほとんどない。
本研究では,生成的視点から深層離散表現を学習する。
具体的には、コードワードのシーケンス上の離散分布を付与し、それらの間のws距離を最小化することにより、コードワードのシーケンス上の分布をデータ分布に輸送する決定論的デコーダを学習する。
WS 距離のクラスタリングの観点と結びつけて,より優れた,より制御可能なクラスタリングソリューションを実現するための,さらなる理論を開発しています。
最後に,本手法をいくつかのよく知られたベンチマークで実証的に評価し,コードブックの利用率や画像再構成・生成率の観点から,他のVQ-VAE変種よりも質的,定量的な性能が得られることを示した。
関連論文リスト
- Gaussian Mixture Vector Quantization with Aggregated Categorical Posterior [5.862123282894087]
ベクトル量子化変分オートエンコーダ(VQ-VAE)を導入する。
VQ-VAEは、離散埋め込みを潜時として使用する変分オートエンコーダの一種である。
GM-VQは,手工芸品に頼らずに,コードブックの利用率を向上し,情報損失を低減する。
論文 参考訳(メタデータ) (2024-10-14T05:58:11Z) - Learning Invariant Molecular Representation in Latent Discrete Space [52.13724532622099]
本稿では,分散シフトに対する不変性とロバスト性を示す分子表現を学習するための新しい枠組みを提案する。
我々のモデルは、様々な分布シフトが存在する場合に、最先端のベースラインに対してより強力な一般化を実現する。
論文 参考訳(メタデータ) (2023-10-22T04:06:44Z) - Hierarchical Sketch Induction for Paraphrase Generation [79.87892048285819]
本稿では、高密度符号化の分解を学習するHRQ-VAE(Hierarchical Refinement Quantized Variational Autoencoders)を紹介する。
HRQ-VAEを用いて、入力文の構文形式を階層化の経路としてエンコードすることで、テスト時の構文スケッチをより容易に予測できる。
論文 参考訳(メタデータ) (2022-03-07T15:28:36Z) - Adaptive Discrete Communication Bottlenecks with Dynamic Vector
Quantization [76.68866368409216]
入力に条件付けされた離散化の厳密度を動的に選択する学習を提案する。
コミュニケーションボトルネックの動的に変化する厳密さは、視覚的推論や強化学習タスクにおけるモデル性能を向上させることができることを示す。
論文 参考訳(メタデータ) (2022-02-02T23:54:26Z) - Unsupervised Controllable Generation with Self-Training [90.04287577605723]
GANによる制御可能な世代は依然として困難な研究課題である。
本稿では,自己学習を通じてジェネレータを制御する潜伏符号の分布を学習するための教師なしフレームワークを提案する。
我々のフレームワークは、変分オートエンコーダのような他の変種と比較して、より良い絡み合いを示す。
論文 参考訳(メタデータ) (2020-07-17T21:50:35Z) - Robust Training of Vector Quantized Bottleneck Models [21.540133031071438]
ベクトル量子変分自動エンコーダモデル(VQ-VAEs)を用いた離散表現の信頼性と効率的な訓練法を示す。
教師なし表現学習では、変分オートエンコーダ(VAE)のような連続潜伏変数モデルの代替となる。
論文 参考訳(メタデータ) (2020-05-18T08:23:41Z) - Improve Variational Autoencoder for Text Generationwith Discrete Latent
Bottleneck [52.08901549360262]
変分オートエンコーダ(VAE)は、エンドツーエンドの表現学習において必須のツールである。
VAEは強い自己回帰デコーダで潜伏変数を無視する傾向がある。
よりコンパクトな潜在空間において暗黙的な潜在特徴マッチングを強制する原理的アプローチを提案する。
論文 参考訳(メタデータ) (2020-04-22T14:41:37Z) - Depthwise Discrete Representation Learning [2.728575246952532]
離散表現の学習の最近の進歩は、言語、オーディオ、ビジョンを含むタスクにおいて、アート結果の状態を導いている。
単語、音素、形状などの潜時要因は連続ではなく離散潜時変数で表される。
ベクトル量子化変分オートエンコーダ(VQVAE)は、複数の領域において顕著な結果をもたらす。
論文 参考訳(メタデータ) (2020-04-11T18:57:13Z) - Deterministic Decoding for Discrete Data in Variational Autoencoders [5.254093731341154]
サンプリングの代わりに最上位のトークンを選択するシーケンシャルデータに対して,決定論的デコーダ(DD-VAE)を用いたVAEモデルについて検討する。
分子生成や最適化問題を含む複数のデータセット上でのDD-VAEの性能を示す。
論文 参考訳(メタデータ) (2020-03-04T16:36:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。