論文の概要: A Comprehensive Survey on Graph Summarization with Graph Neural Networks
- arxiv url: http://arxiv.org/abs/2302.06114v3
- Date: Thu, 4 Jan 2024 00:22:41 GMT
- ステータス: 処理完了
- システム内更新日: 2024-01-05 17:57:18.266455
- Title: A Comprehensive Survey on Graph Summarization with Graph Neural Networks
- Title(参考訳): グラフニューラルネットワークを用いたグラフ要約に関する包括的調査
- Authors: Nasrin Shabani, Jia Wu, Amin Beheshti, Quan Z. Sheng, Jin Foo, Venus
Haghighi, Ambreen Hanif, Maryam Shahabikargar
- Abstract要約: 過去には、グラフの最も重要な部分を統計的に捉えるために、ほとんどのグラフ要約技術が試みられていた。
今日では、現代のグラフデータの高次元性と複雑さにより、ディープラーニング技術がより普及している。
我々の調査は、GNN、畳み込みGNN、グラフオートエンコーダ、グラフアテンションネットワークなど、現在の最先端アプローチのレビューを含む。
- 参考スコア(独自算出の注目度): 21.337505372979066
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: As large-scale graphs become more widespread, more and more computational
challenges with extracting, processing, and interpreting large graph data are
being exposed. It is therefore natural to search for ways to summarize these
expansive graphs while preserving their key characteristics. In the past, most
graph summarization techniques sought to capture the most important part of a
graph statistically. However, today, the high dimensionality and complexity of
modern graph data are making deep learning techniques more popular. Hence, this
paper presents a comprehensive survey of progress in deep learning
summarization techniques that rely on graph neural networks (GNNs). Our
investigation includes a review of the current state-of-the-art approaches,
including recurrent GNNs, convolutional GNNs, graph autoencoders, and graph
attention networks. A new burgeoning line of research is also discussed where
graph reinforcement learning is being used to evaluate and improve the quality
of graph summaries. Additionally, the survey provides details of benchmark
datasets, evaluation metrics, and open-source tools that are often employed in
experimentation settings, along with a detailed comparison, discussion, and
takeaways for the research community focused on graph summarization. Finally,
the survey concludes with a number of open research challenges to motivate
further study in this area.
- Abstract(参考訳): 大規模グラフが普及するにつれて,大規模グラフデータの抽出,処理,解釈といった計算上の課題がますます顕在化しつつある。
したがって、これらの拡張グラフをその重要な特徴を保ちながら要約する方法を探すことは自然である。
過去のグラフ要約技術のほとんどは、グラフの最も重要な部分を統計的に捉えようとしていた。
しかし今日では、現代のグラフデータの高次元性と複雑さにより、ディープラーニング技術がより普及している。
そこで本稿では,グラフニューラルネットワーク(GNN)を利用した深層学習要約技術の進歩を包括的に調査する。
我々の調査は、GNN、畳み込みGNN、グラフオートエンコーダ、グラフアテンションネットワークなど、現在の最先端アプローチのレビューを含む。
グラフ強化学習を用いてグラフ要約の質を評価・改善する新たな研究ラインについても論じる。
さらに、この調査は、グラフの要約に焦点を当てた研究コミュニティのための詳細な比較、議論、要約とともに、実験設定でよく使用されるベンチマークデータセット、評価メトリクス、オープンソースツールの詳細を提供する。
最後に、この調査は、この分野におけるさらなる研究の動機づけとなる多くのオープンリサーチの課題で締めくくられている。
関連論文リスト
- A Survey of Data-Efficient Graph Learning [16.053913182723143]
研究フロンティアとして,データ効率グラフ学習(DEGL)の新たな概念を紹介した。
我々は、自己教師付きグラフ学習、半教師付きグラフ学習、少数ショットグラフ学習など、いくつかの重要な側面に関する最近の進歩を体系的にレビューした。
論文 参考訳(メタデータ) (2024-02-01T09:28:48Z) - A Comprehensive Survey on Graph Reduction: Sparsification, Coarsening, and Condensation [21.76051896779245]
本研究の目的は,グラフスペーシング,グラフ粗化,グラフ凝縮など,グラフ縮小手法の包括的理解を提供することである。
そこで本研究では,これらの手法の技術的詳細を体系的にレビューし,様々なシナリオにまたがる実践的応用を強調した。
論文 参考訳(メタデータ) (2024-01-29T01:19:09Z) - State of the Art and Potentialities of Graph-level Learning [54.68482109186052]
グラフレベルの学習は、比較、回帰、分類など、多くのタスクに適用されている。
グラフの集合を学習する伝統的なアプローチは、サブストラクチャのような手作りの特徴に依存している。
ディープラーニングは、機能を自動的に抽出し、グラフを低次元表現に符号化することで、グラフレベルの学習をグラフの規模に適応させるのに役立っている。
論文 参考訳(メタデータ) (2023-01-14T09:15:49Z) - An Empirical Study of Retrieval-enhanced Graph Neural Networks [48.99347386689936]
グラフニューラルネットワーク(GNN)は、グラフ表現学習に有効なツールである。
本稿では,グラフニューラルネットワークモデルの選択に非依存な GraphRETRIEVAL という検索強化方式を提案する。
我々は13のデータセットに対して包括的な実験を行い、GRAPHRETRIEVALが既存のGNNよりも大幅に改善されていることを観察した。
論文 参考訳(メタデータ) (2022-06-01T09:59:09Z) - Graph Pooling for Graph Neural Networks: Progress, Challenges, and
Opportunities [128.55790219377315]
グラフニューラルネットワークは多くのグラフレベルのタスクの主要なアーキテクチャとして登場した。
グラフプーリングは、グラフ全体の全体的グラフレベル表現を得るためには不可欠である。
論文 参考訳(メタデータ) (2022-04-15T04:02:06Z) - Data Augmentation for Deep Graph Learning: A Survey [66.04015540536027]
まず,グラフデータ拡張のための分類法を提案し,その拡張情報モダリティに基づいて関連研究を分類し,構造化されたレビューを提供する。
DGLにおける2つの課題(すなわち、最適グラフ学習と低リソースグラフ学習)に焦点を当て、グラフデータ拡張に基づく既存の学習パラダイムについて議論し、レビューする。
論文 参考訳(メタデータ) (2022-02-16T18:30:33Z) - Towards Deeper Graph Neural Networks [63.46470695525957]
グラフ畳み込みは近傍の集約を行い、最も重要なグラフ操作の1つである。
いくつかの最近の研究で、この性能劣化は過度に滑らかな問題に起因している。
本研究では,大きな受容領域からの情報を適応的に組み込むディープ適応グラフニューラルネットワーク(DAGNN)を提案する。
論文 参考訳(メタデータ) (2020-07-18T01:11:14Z) - Deep Learning for Learning Graph Representations [58.649784596090385]
グラフデータのマイニングはコンピュータ科学においてポピュラーな研究トピックとなっている。
ネットワークデータの膨大な量は、効率的な分析に大きな課題をもたらしている。
これはグラフ表現の出現を動機付け、グラフを低次元ベクトル空間にマッピングする。
論文 参考訳(メタデータ) (2020-01-02T02:13:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。