論文の概要: Learning from Noisy Crowd Labels with Logics
- arxiv url: http://arxiv.org/abs/2302.06337v2
- Date: Tue, 14 Feb 2023 14:49:16 GMT
- ステータス: 処理完了
- システム内更新日: 2023-02-15 11:37:57.236420
- Title: Learning from Noisy Crowd Labels with Logics
- Title(参考訳): 論理を用いた騒がしい群衆ラベルからの学習
- Authors: Zhijun Chen, Hailong Sun, Haoqian He, Pengpeng Chen
- Abstract要約: 本稿では,EMライクな反復論理知識蒸留フレームワークであるNoisy Crowd Labels (Logic-LNCL) のLogic-guided Learningを紹介する。
提案するフレームワークは最先端技術を改善し,騒々しい群衆ラベルから学習するための新しいソリューションを提供する。
- 参考スコア(独自算出の注目度): 10.574859201380612
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper explores the integration of symbolic logic knowledge into deep
neural networks for learning from noisy crowd labels. We introduce Logic-guided
Learning from Noisy Crowd Labels (Logic-LNCL), an EM-alike iterative logic
knowledge distillation framework that learns from both noisy labeled data and
logic rules of interest. Unlike traditional EM methods, our framework contains
a ``pseudo-E-step'' that distills from the logic rules a new type of learning
target, which is then used in the ``pseudo-M-step'' for training the
classifier. Extensive evaluations on two real-world datasets for text sentiment
classification and named entity recognition demonstrate that the proposed
framework improves the state-of-the-art and provides a new solution to learning
from noisy crowd labels.
- Abstract(参考訳): 本稿では,雑音の多い群集ラベルから学習する深層ニューラルネットワークへの記号論理知識の統合について検討する。
ノイズラベル付きデータと論理規則の両方から学習するemライクな反復型論理知識蒸留フレームワークである,うるさい群衆ラベル(logic-lncl)からの論理誘導学習を導入する。
従来のEMメソッドとは異なり,我々のフレームワークには,論理ルールから新たなタイプの学習ターゲットを抽出する ``pseudo-E-step' が含まれており,それを '`pseudo-M-step' で分類器の訓練に使用する。
テキスト感情分類と名前付きエンティティ認識のための2つの実世界のデータセットに対する広範囲な評価は、提案フレームワークが最先端を改善し、騒々しい群衆ラベルから学習するための新しいソリューションを提供することを示す。
関連論文リスト
- Leveraging Label Semantics and Meta-Label Refinement for Multi-Label Question Classification [11.19022605804112]
本稿では,新手法RR2QCを多ラベル質問分類に適用する。
ラベルセマンティクスとメタラベルの改良を使用して、パーソナライズされた学習とリソースレコメンデーションを強化する。
実験の結果,RR2QCはPrecision@kとF1スコアの既存の分類方法よりも優れていた。
論文 参考訳(メタデータ) (2024-11-04T06:27:14Z) - Reducing Labeling Costs in Sentiment Analysis via Semi-Supervised Learning [0.0]
本研究では,半教師付き学習におけるラベル伝搬について検討する。
テキスト分類のための多様体仮定に基づいて,トランスダクティブなラベル伝搬法を用いる。
ネットワーク埋め込みから隣接グラフ内のコサイン近接に基づくラベルを拡張することにより、ラベルなしデータを教師付き学習に組み合わせる。
論文 参考訳(メタデータ) (2024-10-15T07:25:33Z) - Text2Tree: Aligning Text Representation to the Label Tree Hierarchy for
Imbalanced Medical Classification [9.391704905671476]
本稿では、医療用テキストにおけるデータ課題を再考し、Text2Treeと呼ばれるフレームワークに依存しない新しいアルゴリズムを提案する。
ラベルのICDコードツリー構造をカスケードアテンションモジュールに組み込んで階層型ラベル表現を学習する。
異なるラベルのサンプルを再利用・識別することでテキスト分類を向上させるために,2つの新しい学習手法であるSimisity Surrogate Learning (SSL) とDissimilarity Mixup Learning (DML) が考案された。
論文 参考訳(メタデータ) (2023-11-28T10:02:08Z) - LOGICSEG: Parsing Visual Semantics with Neural Logic Learning and
Reasoning [73.98142349171552]
LOGICSEGは、神経誘導学習と論理推論をリッチデータとシンボリック知識の両方に統合する、全体論的視覚意味論である。
ファジィ論理に基づく連続的な緩和の間、論理式はデータとニューラルな計算グラフに基礎を置いており、論理によるネットワークトレーニングを可能にする。
これらの設計によりLOGICSEGは、既存のセグメンテーションモデルに容易に統合できる汎用的でコンパクトなニューラル論理マシンとなる。
論文 参考訳(メタデータ) (2023-09-24T05:43:19Z) - Logic-induced Diagnostic Reasoning for Semi-supervised Semantic
Segmentation [85.12429517510311]
LogicDiagは、セマンティックセグメンテーションのためのニューラルネットワークによる半教師付き学習フレームワークである。
私たちの重要な洞察は、記号的知識によって識別される擬似ラベル内の衝突は、強いが一般的に無視される学習信号として機能する、ということです。
本稿では,論理規則の集合として意味論的概念の構造的抽象化を定式化するデータ・ハングリーセグメンテーションシナリオにおけるLogicDiagの実践的応用について紹介する。
論文 参考訳(メタデータ) (2023-08-24T06:50:07Z) - Channel-Wise Contrastive Learning for Learning with Noisy Labels [60.46434734808148]
チャネルワイド・コントラッシブ・ラーニング(CWCL)を導入し,真正なラベル情報とノイズを区別する。
従来のインスタンス単位のコントラスト学習(IWCL)とは異なり、CWCLはよりニュアンスでレジリエントな特徴を真のラベルと一致させる傾向にある。
まずCWCLを用いて、クリーンにラベル付けされたサンプルを識別し、次に、これらのサンプルを段階的に微調整する。
論文 参考訳(メタデータ) (2023-08-14T06:04:50Z) - Unleashing the Potential of Regularization Strategies in Learning with
Noisy Labels [65.92994348757743]
クロスエントロピー損失を用いた単純なベースラインと、広く使われている正規化戦略を組み合わせることで、最先端の手法より優れていることを示す。
この結果から,正規化戦略の組み合わせは,ノイズラベルを用いた学習の課題に対処する上で,複雑なアルゴリズムよりも効果的であることが示唆された。
論文 参考訳(メタデータ) (2023-07-11T05:58:20Z) - Description-Enhanced Label Embedding Contrastive Learning for Text
Classification [65.01077813330559]
モデル学習プロセスにおける自己監督型学習(SSL)と新しい自己監督型関係関係(R2)分類タスクの設計
テキスト分類とR2分類を最適化対象として扱うテキスト分類のための関係学習ネットワーク(R2-Net)の関係について検討する。
ラベルセマンティックラーニングのためのマルチアスペクト記述を得るためのWordNetからの外部知識。
論文 参考訳(メタデータ) (2023-06-15T02:19:34Z) - Transductive CLIP with Class-Conditional Contrastive Learning [68.51078382124331]
雑音ラベル付き分類ネットワークをスクラッチから学習するための新しいフレームワークであるTransductive CLIPを提案する。
擬似ラベルへの依存を軽減するために,クラス条件のコントラスト学習機構を提案する。
アンサンブルラベルは、ノイズラベル付きディープニューラルネットワークのトレーニングを安定化するための擬似ラベル更新戦略として採用されている。
論文 参考訳(メタデータ) (2022-06-13T14:04:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。