Maximum a Posteriori Inference for Factor Graphs via Benders' Decomposition
- URL: http://arxiv.org/abs/2410.19131v1
- Date: Thu, 24 Oct 2024 19:57:56 GMT
- Title: Maximum a Posteriori Inference for Factor Graphs via Benders' Decomposition
- Authors: Harsh Vardhan Dubey, Ji Ah Lee, Patrick Flaherty,
- Abstract summary: We present a method for maximum a-posteriori inference in general Bayesian factor models.
We derive MAP estimation algorithms for the Bayesian Gaussian mixture model and latent Dirichlet allocation.
- Score: 0.38233569758620056
- License:
- Abstract: Many Bayesian statistical inference problems come down to computing a maximum a-posteriori (MAP) assignment of latent variables. Yet, standard methods for estimating the MAP assignment do not have a finite time guarantee that the algorithm has converged to a fixed point. Previous research has found that MAP inference can be represented in dual form as a linear programming problem with a non-polynomial number of constraints. A Lagrangian relaxation of the dual yields a statistical inference algorithm as a linear programming problem. However, the decision as to which constraints to remove in the relaxation is often heuristic. We present a method for maximum a-posteriori inference in general Bayesian factor models that sequentially adds constraints to the fully relaxed dual problem using Benders' decomposition. Our method enables the incorporation of expressive integer and logical constraints in clustering problems such as must-link, cannot-link, and a minimum number of whole samples allocated to each cluster. Using this approach, we derive MAP estimation algorithms for the Bayesian Gaussian mixture model and latent Dirichlet allocation. Empirical results show that our method produces a higher optimal posterior value compared to Gibbs sampling and variational Bayes methods for standard data sets and provides certificate of convergence.
Related papers
- Efficient Graph Laplacian Estimation by Proximal Newton [12.05527862797306]
A graph learning problem can be formulated as a maximum likelihood estimation (MLE) of the precision matrix.
We develop a second-order approach to obtain an efficient solver utilizing several algorithmic features.
arXiv Detail & Related papers (2023-02-13T15:13:22Z) - Tightening Discretization-based MILP Models for the Pooling Problem
using Upper Bounds on Bilinear Terms [2.6253445491808307]
Discretization-based methods have been proposed for solving non optimization problems with bi-linear terms.
This paper shows that discretization-based MILP models can be used to solve the pooling problem.
arXiv Detail & Related papers (2022-07-08T05:28:59Z) - Statistical Inference of Constrained Stochastic Optimization via Sketched Sequential Quadratic Programming [53.63469275932989]
We consider online statistical inference of constrained nonlinear optimization problems.
We apply the Sequential Quadratic Programming (StoSQP) method to solve these problems.
arXiv Detail & Related papers (2022-05-27T00:34:03Z) - Faster One-Sample Stochastic Conditional Gradient Method for Composite
Convex Minimization [61.26619639722804]
We propose a conditional gradient method (CGM) for minimizing convex finite-sum objectives formed as a sum of smooth and non-smooth terms.
The proposed method, equipped with an average gradient (SAG) estimator, requires only one sample per iteration. Nevertheless, it guarantees fast convergence rates on par with more sophisticated variance reduction techniques.
arXiv Detail & Related papers (2022-02-26T19:10:48Z) - Efficient semidefinite bounds for multi-label discrete graphical models [6.226454551201676]
One of the main queries on such models is to identify the SDPWCSP Function on Cost of a Posteri (MAP) Networks.
We consider a traditional dualized constraint approach and a dedicated dedicated SDP/Monteiro style method based on row-by-row updates.
arXiv Detail & Related papers (2021-11-24T13:38:34Z) - Partial Counterfactual Identification from Observational and
Experimental Data [83.798237968683]
We develop effective Monte Carlo algorithms to approximate the optimal bounds from an arbitrary combination of observational and experimental data.
Our algorithms are validated extensively on synthetic and real-world datasets.
arXiv Detail & Related papers (2021-10-12T02:21:30Z) - Non-approximate Inference for Collective Graphical Models on Path Graphs
via Discrete Difference of Convex Algorithm [19.987509826212115]
This paper proposes a new method for MAP inference for Collective Graphical Model (CGM) on path graphs.
First we show that the MAP inference problem can be formulated as a (non-linear) minimum cost flow problem.
In our algorithm, important subroutines in DCA can be efficiently calculated by minimum convex cost flow algorithms.
arXiv Detail & Related papers (2021-02-18T07:28:18Z) - Optimal oracle inequalities for solving projected fixed-point equations [53.31620399640334]
We study methods that use a collection of random observations to compute approximate solutions by searching over a known low-dimensional subspace of the Hilbert space.
We show how our results precisely characterize the error of a class of temporal difference learning methods for the policy evaluation problem with linear function approximation.
arXiv Detail & Related papers (2020-12-09T20:19:32Z) - Efficient semidefinite-programming-based inference for binary and
multi-class MRFs [83.09715052229782]
We propose an efficient method for computing the partition function or MAP estimate in a pairwise MRF.
We extend semidefinite relaxations from the typical binary MRF to the full multi-class setting, and develop a compact semidefinite relaxation that can again be solved efficiently using the solver.
arXiv Detail & Related papers (2020-12-04T15:36:29Z) - Conditional gradient methods for stochastically constrained convex
minimization [54.53786593679331]
We propose two novel conditional gradient-based methods for solving structured convex optimization problems.
The most important feature of our framework is that only a subset of the constraints is processed at each iteration.
Our algorithms rely on variance reduction and smoothing used in conjunction with conditional gradient steps, and are accompanied by rigorous convergence guarantees.
arXiv Detail & Related papers (2020-07-07T21:26:35Z) - Consistent Second-Order Conic Integer Programming for Learning Bayesian
Networks [2.7473982588529653]
We study the problem of learning the sparse DAG structure of a BN from continuous observational data.
The optimal solution to this mathematical program is known to have desirable statistical properties under certain conditions.
We propose a concrete early stopping criterion to terminate the branch-and-bound process in order to obtain a near-optimal solution.
arXiv Detail & Related papers (2020-05-29T00:13:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.