Ground(less) Truth: A Causal Framework for Proxy Labels in
Human-Algorithm Decision-Making
- URL: http://arxiv.org/abs/2302.06503v4
- Date: Thu, 25 May 2023 21:40:56 GMT
- Title: Ground(less) Truth: A Causal Framework for Proxy Labels in
Human-Algorithm Decision-Making
- Authors: Luke Guerdan, Amanda Coston, Zhiwei Steven Wu, Kenneth Holstein
- Abstract summary: We identify five sources of target variable bias that can impact the validity of proxy labels in human-AI decision-making tasks.
We develop a causal framework to disentangle the relationship between each bias.
We conclude by discussing opportunities to better address target variable bias in future research.
- Score: 29.071173441651734
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: A growing literature on human-AI decision-making investigates strategies for
combining human judgment with statistical models to improve decision-making.
Research in this area often evaluates proposed improvements to models,
interfaces, or workflows by demonstrating improved predictive performance on
"ground truth" labels. However, this practice overlooks a key difference
between human judgments and model predictions. Whereas humans reason about
broader phenomena of interest in a decision -- including latent constructs that
are not directly observable, such as disease status, the "toxicity" of online
comments, or future "job performance" -- predictive models target proxy labels
that are readily available in existing datasets. Predictive models' reliance on
simplistic proxies makes them vulnerable to various sources of statistical
bias. In this paper, we identify five sources of target variable bias that can
impact the validity of proxy labels in human-AI decision-making tasks. We
develop a causal framework to disentangle the relationship between each bias
and clarify which are of concern in specific human-AI decision-making tasks. We
demonstrate how our framework can be used to articulate implicit assumptions
made in prior modeling work, and we recommend evaluation strategies for
verifying whether these assumptions hold in practice. We then leverage our
framework to re-examine the designs of prior human subjects experiments that
investigate human-AI decision-making, finding that only a small fraction of
studies examine factors related to target variable bias. We conclude by
discussing opportunities to better address target variable bias in future
research.
Related papers
- Towards Objective and Unbiased Decision Assessments with LLM-Enhanced Hierarchical Attention Networks [6.520709313101523]
This work investigates cognitive bias identification in high-stake decision making process by human experts.
We propose bias-aware AI-augmented workflow that surpass human judgment.
In our experiments, both the proposed model and the agentic workflow significantly improves on both human judgment and alternative models.
arXiv Detail & Related papers (2024-11-13T10:42:11Z) - Decoding Susceptibility: Modeling Misbelief to Misinformation Through a Computational Approach [61.04606493712002]
Susceptibility to misinformation describes the degree of belief in unverifiable claims that is not observable.
Existing susceptibility studies heavily rely on self-reported beliefs.
We propose a computational approach to model users' latent susceptibility levels.
arXiv Detail & Related papers (2023-11-16T07:22:56Z) - Learning for Counterfactual Fairness from Observational Data [62.43249746968616]
Fairness-aware machine learning aims to eliminate biases of learning models against certain subgroups described by certain protected (sensitive) attributes such as race, gender, and age.
A prerequisite for existing methods to achieve counterfactual fairness is the prior human knowledge of the causal model for the data.
In this work, we address the problem of counterfactually fair prediction from observational data without given causal models by proposing a novel framework CLAIRE.
arXiv Detail & Related papers (2023-07-17T04:08:29Z) - Is Your Model "MADD"? A Novel Metric to Evaluate Algorithmic Fairness
for Predictive Student Models [0.0]
We propose a novel metric, the Model Absolute Density Distance (MADD), to analyze models' discriminatory behaviors.
We evaluate our approach on the common task of predicting student success in online courses, using several common predictive classification models.
arXiv Detail & Related papers (2023-05-24T16:55:49Z) - Counterfactual Fair Opportunity: Measuring Decision Model Fairness with
Counterfactual Reasoning [5.626570248105078]
This work aims to unveil unfair model behaviors using counterfactual reasoning in the case of fairness under unawareness setting.
A counterfactual version of equal opportunity named counterfactual fair opportunity is defined and two novel metrics that analyze the sensitive information of counterfactual samples are introduced.
arXiv Detail & Related papers (2023-02-16T09:13:53Z) - D-BIAS: A Causality-Based Human-in-the-Loop System for Tackling
Algorithmic Bias [57.87117733071416]
We propose D-BIAS, a visual interactive tool that embodies human-in-the-loop AI approach for auditing and mitigating social biases.
A user can detect the presence of bias against a group by identifying unfair causal relationships in the causal network.
For each interaction, say weakening/deleting a biased causal edge, the system uses a novel method to simulate a new (debiased) dataset.
arXiv Detail & Related papers (2022-08-10T03:41:48Z) - Cross-model Fairness: Empirical Study of Fairness and Ethics Under Model Multiplicity [10.144058870887061]
We argue that individuals can be harmed when one predictor is chosen ad hoc from a group of equally well performing models.
Our findings suggest that such unfairness can be readily found in real life and it may be difficult to mitigate by technical means alone.
arXiv Detail & Related papers (2022-03-14T14:33:39Z) - Investigations of Performance and Bias in Human-AI Teamwork in Hiring [30.046502708053097]
In AI-assisted decision-making, effective hybrid teamwork (human-AI) is not solely dependent on AI performance alone.
We investigate how both a model's predictive performance and bias may transfer to humans in a recommendation-aided decision task.
arXiv Detail & Related papers (2022-02-21T17:58:07Z) - Empirical Estimates on Hand Manipulation are Recoverable: A Step Towards
Individualized and Explainable Robotic Support in Everyday Activities [80.37857025201036]
Key challenge for robotic systems is to figure out the behavior of another agent.
Processing correct inferences is especially challenging when (confounding) factors are not controlled experimentally.
We propose equipping robots with the necessary tools to conduct observational studies on people.
arXiv Detail & Related papers (2022-01-27T22:15:56Z) - Statistical discrimination in learning agents [64.78141757063142]
Statistical discrimination emerges in agent policies as a function of both the bias in the training population and of agent architecture.
We show that less discrimination emerges with agents that use recurrent neural networks, and when their training environment has less bias.
arXiv Detail & Related papers (2021-10-21T18:28:57Z) - Characterizing Fairness Over the Set of Good Models Under Selective
Labels [69.64662540443162]
We develop a framework for characterizing predictive fairness properties over the set of models that deliver similar overall performance.
We provide tractable algorithms to compute the range of attainable group-level predictive disparities.
We extend our framework to address the empirically relevant challenge of selectively labelled data.
arXiv Detail & Related papers (2021-01-02T02:11:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.