Unleashing the Power of Electrocardiograms: A novel approach for Patient
Identification in Healthcare Systems with ECG Signals
- URL: http://arxiv.org/abs/2302.06529v2
- Date: Thu, 6 Jul 2023 08:57:51 GMT
- Title: Unleashing the Power of Electrocardiograms: A novel approach for Patient
Identification in Healthcare Systems with ECG Signals
- Authors: Caterina Fuster-Barcel\'o, Carmen C\'amara, Pedro Peris-L\'opez
- Abstract summary: This paper presents a novel approach for patient identification in healthcare systems using electrocardiogram signals.
A convolutional neural network is used to classify users based on images extracted from ECG signals.
- Score: 0.696125353550498
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Over the course of the past two decades, a substantial body of research has
substantiated the viability of utilising cardiac signals as a biometric
modality. This paper presents a novel approach for patient identification in
healthcare systems using electrocardiogram signals. A convolutional neural
network is used to classify users based on images extracted from ECG signals.
The proposed identification system is evaluated in multiple databases,
providing a comprehensive understanding of its potential in real-world
scenarios. The impact of Cardiovascular Diseases on generic user identification
has been largely overlooked in previous studies. The presented method takes
into account the cardiovascular condition of the patients, ensuring that the
results obtained are not biased or limited. Furthermore, the results obtained
are consistent and reliable, with lower error rates and higher accuracy
metrics, as demonstrated through extensive experimentation. All these features
make the proposed method a valuable contribution to the field of patient
identification in healthcare systems, and make it a strong contender for
practical applications.
Related papers
- From Motion to Meaning: Biomechanics-Informed Neural Network for Explainable Cardiovascular Disease Identification [1.1142444517901016]
We utilize the energy strain formulation of Neo-Hookean material to model cardiac tissue deformations.<n>We estimate the local strains within the moving heart and extract a detailed set of features used for cardiovascular disease classification.
arXiv Detail & Related papers (2025-07-08T08:43:05Z) - Congenital Heart Disease Classification Using Phonocardiograms: A Scalable Screening Tool for Diverse Environments [34.10187730651477]
Congenital heart disease (CHD) is a critical condition that demands early detection.
This study presents a deep learning model designed to detect CHD using phonocardiogram (PCG) signals.
We evaluated our model on several datasets, including the primary dataset from Bangladesh.
arXiv Detail & Related papers (2025-03-28T05:47:44Z) - Leveraging Cardiovascular Simulations for In-Vivo Prediction of Cardiac Biomarkers [43.17768785084301]
We train an amortized neural posterior estimator on a newly built large dataset of cardiac simulations.
We incorporate elements modeling effects to better align simulated data with real-world measurements.
The proposed framework can further integrate in-vivo data sources to refine its predictive capabilities on real-world data.
arXiv Detail & Related papers (2024-12-23T13:05:17Z) - Integrating Deep Learning with Fundus and Optical Coherence Tomography for Cardiovascular Disease Prediction [47.7045293755736]
Early identification of patients at risk of cardiovascular diseases (CVD) is crucial for effective preventive care, reducing healthcare burden, and improving patients' quality of life.
This study demonstrates the potential of retinal optical coherence tomography ( OCT) imaging combined with fundus photographs for identifying future adverse cardiac events.
We propose a novel binary classification network based on a Multi-channel Variational Autoencoder (MCVAE), which learns a latent embedding of patients' fundus and OCT images to classify individuals into two groups: those likely to develop CVD in the future and those who are not.
arXiv Detail & Related papers (2024-10-18T12:37:51Z) - SSSD-ECG-nle: New Label Embeddings with Structured State-Space Models for ECG generation [0.0]
Diffusion models have made significant progress in recent years, creating the possibility for synthesizing data comparable to the real one.
We propose the SSSD-ECG-nle architecture based on SSSD-ECG with a modified conditioning mechanism and demonstrate its efficiency on downstream tasks.
arXiv Detail & Related papers (2024-07-15T16:31:25Z) - Anomaly Detection in Electrocardiograms: Advancing Clinical Diagnosis Through Self-Supervised Learning [32.37717219026923]
Existing systems often miss rare cardiac anomalies that could be precursors to serious, life-threatening issues or alterations in the cardiac macro/microstructure.
We focus on self-supervised anomaly detection (AD), training exclusively on normal ECGs to recognize deviations indicating anomalies.
We introduce a novel self-supervised learning framework for ECG AD, utilizing a vast dataset of normal ECGs to autonomously detect and localize cardiac anomalies.
arXiv Detail & Related papers (2024-04-07T12:15:53Z) - EKGNet: A 10.96{\mu}W Fully Analog Neural Network for Intra-Patient
Arrhythmia Classification [79.7946379395238]
We present an integrated approach by combining analog computing and deep learning for electrocardiogram (ECG) arrhythmia classification.
We propose EKGNet, a hardware-efficient and fully analog arrhythmia classification architecture that archives high accuracy with low power consumption.
arXiv Detail & Related papers (2023-10-24T02:37:49Z) - Deep-Learning Tool for Early Identifying Non-Traumatic Intracranial
Hemorrhage Etiology based on CT Scan [40.51754649947294]
The deep learning model was developed with 1868 eligible NCCT scans with non-traumatic ICH collected between January 2011 and April 2018.
The model's diagnostic performance was compared with clinicians's performance.
The clinicians achieve significant improvements in the sensitivity, specificity, and accuracy of diagnoses of certain hemorrhage etiologies with proposed system augmentation.
arXiv Detail & Related papers (2023-02-02T08:45:17Z) - Identifying Ventricular Arrhythmias and Their Predictors by Applying
Machine Learning Methods to Electronic Health Records in Patients With
Hypertrophic Cardiomyopathy(HCM-VAr-Risk Model) [0.3811495093928132]
This is the first application of machine learning for identifying hypertrophic cardiomyopathy patients with ventricular arrhythmias (VAr) using clinical attributes.
We evaluated 93 clinical variables, of which 22 proved predictive of VAr.
Our method identified 12 new predictors of VAr, in addition to 10 established SCD predictors.
arXiv Detail & Related papers (2021-09-19T20:11:07Z) - Estimation of atrial fibrillation from lead-I ECGs: Comparison with
cardiologists and machine learning model (CurAlive), a clinical validation
study [0.0]
This study presents a method to detect atrial fibrillation with lead-I ECGs using artificial intelligence.
The aim of the study is to compare the accuracy of the diagnoses estimated by cardiologists and artificial intelligence over lead-I ECGs.
arXiv Detail & Related papers (2021-04-15T12:50:16Z) - Identification of Ischemic Heart Disease by using machine learning
technique based on parameters measuring Heart Rate Variability [50.591267188664666]
In this study, 18 non-invasive features (age, gender, left ventricular ejection fraction and 15 obtained from HRV) of 243 subjects were used to train and validate a series of several ANN.
The best result was obtained using 7 input parameters and 7 hidden nodes with an accuracy of 98.9% and 82% for the training and validation dataset.
arXiv Detail & Related papers (2020-10-29T19:14:41Z) - Personalized pathology test for Cardio-vascular disease: Approximate
Bayesian computation with discriminative summary statistics learning [48.7576911714538]
We propose a platelet deposition model and an inferential scheme to estimate the biologically meaningful parameters using approximate computation.
This work opens up an unprecedented opportunity of personalized pathology test for CVD detection and medical treatment.
arXiv Detail & Related papers (2020-10-13T15:20:21Z) - Prediction of the onset of cardiovascular diseases from electronic
health records using multi-task gated recurrent units [51.14334174570822]
We propose a multi-task recurrent neural network with attention mechanism for predicting cardiovascular events from electronic health records.
The proposed approach is compared to a standard clinical risk predictor (QRISK) and machine learning alternatives using 5-year data from a NHS Foundation Trust.
arXiv Detail & Related papers (2020-07-16T17:43:13Z) - ECG-DelNet: Delineation of Ambulatory Electrocardiograms with Mixed
Quality Labeling Using Neural Networks [69.25956542388653]
Deep learning (DL) algorithms are gaining weight in academic and industrial settings.
We demonstrate DL can be successfully applied to low interpretative tasks by embedding ECG detection and delineation onto a segmentation framework.
The model was trained using PhysioNet's QT database, comprised of 105 ambulatory ECG recordings.
arXiv Detail & Related papers (2020-05-11T16:29:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.