Raising the Cost of Malicious AI-Powered Image Editing
- URL: http://arxiv.org/abs/2302.06588v1
- Date: Mon, 13 Feb 2023 18:38:42 GMT
- Title: Raising the Cost of Malicious AI-Powered Image Editing
- Authors: Hadi Salman, Alaa Khaddaj, Guillaume Leclerc, Andrew Ilyas, Aleksander
Madry
- Abstract summary: We present an approach to mitigating the risks of malicious image editing posed by large diffusion models.
The key idea is to immunize images so as to make them resistant to manipulation by these models.
- Score: 82.71990330465115
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present an approach to mitigating the risks of malicious image editing
posed by large diffusion models. The key idea is to immunize images so as to
make them resistant to manipulation by these models. This immunization relies
on injection of imperceptible adversarial perturbations designed to disrupt the
operation of the targeted diffusion models, forcing them to generate
unrealistic images. We provide two methods for crafting such perturbations, and
then demonstrate their efficacy. Finally, we discuss a policy component
necessary to make our approach fully effective and practical -- one that
involves the organizations developing diffusion models, rather than individual
users, to implement (and support) the immunization process.
Related papers
- DiffusionGuard: A Robust Defense Against Malicious Diffusion-based Image Editing [93.45507533317405]
DiffusionGuard is a robust and effective defense method against unauthorized edits by diffusion-based image editing models.
We introduce a novel objective that generates adversarial noise targeting the early stage of the diffusion process.
We also introduce a mask-augmentation technique to enhance robustness against various masks during test time.
arXiv Detail & Related papers (2024-10-08T05:19:19Z) - Pixel Is Not A Barrier: An Effective Evasion Attack for Pixel-Domain Diffusion Models [9.905296922309157]
Diffusion Models have emerged as powerful generative models for high-quality image synthesis, with many subsequent image editing techniques based on them.
Previous works have attempted to safeguard images from diffusion-based editing by adding imperceptible perturbations.
Our work proposes a novel attacking framework with a feature representation attack loss that exploits vulnerabilities in denoising UNets and a latent optimization strategy to enhance the naturalness of protected images.
arXiv Detail & Related papers (2024-08-21T17:56:34Z) - Six-CD: Benchmarking Concept Removals for Benign Text-to-image Diffusion Models [58.74606272936636]
Text-to-image (T2I) diffusion models have shown exceptional capabilities in generating images that closely correspond to textual prompts.
The models could be exploited for malicious purposes, such as generating images with violence or nudity, or creating unauthorized portraits of public figures in inappropriate contexts.
concept removal methods have been proposed to modify diffusion models to prevent the generation of malicious and unwanted concepts.
arXiv Detail & Related papers (2024-06-21T03:58:44Z) - Perturbing Attention Gives You More Bang for the Buck: Subtle Imaging Perturbations That Efficiently Fool Customized Diffusion Models [11.91784429717735]
We propose CAAT, a generic and efficient approach to fool latent diffusion models (LDMs)
We show that a subtle gradient on an image can significantly impact the cross-attention layers, thus changing the mapping between text and image.
Experiments demonstrate that CAAT is compatible with diverse diffusion models and outperforms baseline attack methods.
arXiv Detail & Related papers (2024-04-23T14:31:15Z) - Revealing Vulnerabilities in Stable Diffusion via Targeted Attacks [41.531913152661296]
We formulate the problem of targeted adversarial attack on Stable Diffusion and propose a framework to generate adversarial prompts.
Specifically, we design a gradient-based embedding optimization method to craft reliable adversarial prompts that guide stable diffusion to generate specific images.
After obtaining successful adversarial prompts, we reveal the mechanisms that cause the vulnerability of the model.
arXiv Detail & Related papers (2024-01-16T12:15:39Z) - Adversarial Examples are Misaligned in Diffusion Model Manifolds [7.979892202477701]
This study is dedicated to the investigation of adversarial attacks through the lens of diffusion models.
Our focus lies in utilizing the diffusion model to detect and analyze the anomalies introduced by these attacks on images.
Results demonstrate a notable capacity to discriminate effectively between benign and attacked images.
arXiv Detail & Related papers (2024-01-12T15:29:21Z) - Adv-Diffusion: Imperceptible Adversarial Face Identity Attack via Latent
Diffusion Model [61.53213964333474]
We propose a unified framework Adv-Diffusion that can generate imperceptible adversarial identity perturbations in the latent space but not the raw pixel space.
Specifically, we propose the identity-sensitive conditioned diffusion generative model to generate semantic perturbations in the surroundings.
The designed adaptive strength-based adversarial perturbation algorithm can ensure both attack transferability and stealthiness.
arXiv Detail & Related papers (2023-12-18T15:25:23Z) - EditShield: Protecting Unauthorized Image Editing by Instruction-guided Diffusion Models [26.846110318670934]
We propose a protection method EditShield against unauthorized modifications from text-to-image diffusion models.
Specifically, EditShield works by adding imperceptible perturbations that can shift the latent representation used in the diffusion process.
Our experiments demonstrate EditShield's effectiveness among synthetic and real-world datasets.
arXiv Detail & Related papers (2023-11-19T06:00:56Z) - Training Diffusion Models with Reinforcement Learning [82.29328477109826]
Diffusion models are trained with an approximation to the log-likelihood objective.
In this paper, we investigate reinforcement learning methods for directly optimizing diffusion models for downstream objectives.
We describe how posing denoising as a multi-step decision-making problem enables a class of policy gradient algorithms.
arXiv Detail & Related papers (2023-05-22T17:57:41Z) - Data Forensics in Diffusion Models: A Systematic Analysis of Membership
Privacy [62.16582309504159]
We develop a systematic analysis of membership inference attacks on diffusion models and propose novel attack methods tailored to each attack scenario.
Our approach exploits easily obtainable quantities and is highly effective, achieving near-perfect attack performance (>0.9 AUCROC) in realistic scenarios.
arXiv Detail & Related papers (2023-02-15T17:37:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.