Adversarial Examples are Misaligned in Diffusion Model Manifolds
- URL: http://arxiv.org/abs/2401.06637v5
- Date: Sat, 16 Mar 2024 12:45:42 GMT
- Title: Adversarial Examples are Misaligned in Diffusion Model Manifolds
- Authors: Peter Lorenz, Ricard Durall, Janis Keuper,
- Abstract summary: This study is dedicated to the investigation of adversarial attacks through the lens of diffusion models.
Our focus lies in utilizing the diffusion model to detect and analyze the anomalies introduced by these attacks on images.
Results demonstrate a notable capacity to discriminate effectively between benign and attacked images.
- Score: 7.979892202477701
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In recent years, diffusion models (DMs) have drawn significant attention for their success in approximating data distributions, yielding state-of-the-art generative results. Nevertheless, the versatility of these models extends beyond their generative capabilities to encompass various vision applications, such as image inpainting, segmentation, adversarial robustness, among others. This study is dedicated to the investigation of adversarial attacks through the lens of diffusion models. However, our objective does not involve enhancing the adversarial robustness of image classifiers. Instead, our focus lies in utilizing the diffusion model to detect and analyze the anomalies introduced by these attacks on images. To that end, we systematically examine the alignment of the distributions of adversarial examples when subjected to the process of transformation using diffusion models. The efficacy of this approach is assessed across CIFAR-10 and ImageNet datasets, including varying image sizes in the latter. The results demonstrate a notable capacity to discriminate effectively between benign and attacked images, providing compelling evidence that adversarial instances do not align with the learned manifold of the DMs.
Related papers
- Merging and Splitting Diffusion Paths for Semantically Coherent Panoramas [33.334956022229846]
We propose the Merge-Attend-Diffuse operator, which can be plugged into different types of pretrained diffusion models used in a joint diffusion setting.
Specifically, we merge the diffusion paths, reprogramming self- and cross-attention to operate on the aggregated latent space.
Our method maintains compatibility with the input prompt and visual quality of the generated images while increasing their semantic coherence.
arXiv Detail & Related papers (2024-08-28T09:22:32Z) - Diffusion Models in Low-Level Vision: A Survey [82.77962165415153]
diffusion model-based solutions have emerged as widely acclaimed for their ability to produce samples of superior quality and diversity.
We present three generic diffusion modeling frameworks and explore their correlations with other deep generative models.
We summarize extended diffusion models applied in other tasks, including medical, remote sensing, and video scenarios.
arXiv Detail & Related papers (2024-06-17T01:49:27Z) - Membership Inference on Text-to-Image Diffusion Models via Conditional Likelihood Discrepancy [36.156856772794065]
We propose a conditional overfitting phenomenon in text-to-image diffusion models.
Our method significantly outperforms previous methods across various data and dataset scales.
arXiv Detail & Related papers (2024-05-23T17:09:51Z) - Perturbing Attention Gives You More Bang for the Buck: Subtle Imaging Perturbations That Efficiently Fool Customized Diffusion Models [11.91784429717735]
We propose CAAT, a generic and efficient approach to fool latent diffusion models (LDMs)
We show that a subtle gradient on an image can significantly impact the cross-attention layers, thus changing the mapping between text and image.
Experiments demonstrate that CAAT is compatible with diverse diffusion models and outperforms baseline attack methods.
arXiv Detail & Related papers (2024-04-23T14:31:15Z) - Bridging Generative and Discriminative Models for Unified Visual
Perception with Diffusion Priors [56.82596340418697]
We propose a simple yet effective framework comprising a pre-trained Stable Diffusion (SD) model containing rich generative priors, a unified head (U-head) capable of integrating hierarchical representations, and an adapted expert providing discriminative priors.
Comprehensive investigations unveil potential characteristics of Vermouth, such as varying granularity of perception concealed in latent variables at distinct time steps and various U-net stages.
The promising results demonstrate the potential of diffusion models as formidable learners, establishing their significance in furnishing informative and robust visual representations.
arXiv Detail & Related papers (2024-01-29T10:36:57Z) - Adv-Diffusion: Imperceptible Adversarial Face Identity Attack via Latent
Diffusion Model [61.53213964333474]
We propose a unified framework Adv-Diffusion that can generate imperceptible adversarial identity perturbations in the latent space but not the raw pixel space.
Specifically, we propose the identity-sensitive conditioned diffusion generative model to generate semantic perturbations in the surroundings.
The designed adaptive strength-based adversarial perturbation algorithm can ensure both attack transferability and stealthiness.
arXiv Detail & Related papers (2023-12-18T15:25:23Z) - Your Diffusion Model is Secretly a Zero-Shot Classifier [90.40799216880342]
We show that density estimates from large-scale text-to-image diffusion models can be leveraged to perform zero-shot classification.
Our generative approach to classification attains strong results on a variety of benchmarks.
Our results are a step toward using generative over discriminative models for downstream tasks.
arXiv Detail & Related papers (2023-03-28T17:59:56Z) - DiffMIC: Dual-Guidance Diffusion Network for Medical Image
Classification [32.67098520984195]
We propose the first diffusion-based model (named DiffMIC) to address general medical image classification.
Our experimental results demonstrate that DiffMIC outperforms state-of-the-art methods by a significant margin.
arXiv Detail & Related papers (2023-03-19T09:15:45Z) - Data Forensics in Diffusion Models: A Systematic Analysis of Membership
Privacy [62.16582309504159]
We develop a systematic analysis of membership inference attacks on diffusion models and propose novel attack methods tailored to each attack scenario.
Our approach exploits easily obtainable quantities and is highly effective, achieving near-perfect attack performance (>0.9 AUCROC) in realistic scenarios.
arXiv Detail & Related papers (2023-02-15T17:37:49Z) - Towards Understanding and Boosting Adversarial Transferability from a
Distribution Perspective [80.02256726279451]
adversarial attacks against Deep neural networks (DNNs) have received broad attention in recent years.
We propose a novel method that crafts adversarial examples by manipulating the distribution of the image.
Our method can significantly improve the transferability of the crafted attacks and achieves state-of-the-art performance in both untargeted and targeted scenarios.
arXiv Detail & Related papers (2022-10-09T09:58:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.