論文の概要: In Search for a Generalizable Method for Source Free Domain Adaptation
- arxiv url: http://arxiv.org/abs/2302.06658v2
- Date: Sat, 24 Jun 2023 22:37:00 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-27 23:38:47.548844
- Title: In Search for a Generalizable Method for Source Free Domain Adaptation
- Title(参考訳): ソースフリードメイン適応のための一般化可能な手法の探索
- Authors: Malik Boudiaf, Tom Denton, Bart van Merri\"enboer, Vincent Dumoulin,
Eleni Triantafillou
- Abstract要約: ソースフリードメイン適応(SFDA)は、非ラベルデータのみを使用して、オフザシェルフモデルを新しいドメインに適応できるため、魅力的である。
本研究では,生物音響学における自然発生分布シフトの課題に対して,既存のSFDA技術を適用した。
既存の手法は、視力ベンチマークで観察されたものと異なる相対性を示し、時には適応が全くないよりも悪い場合もあります。
- 参考スコア(独自算出の注目度): 9.032468541589203
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Source-free domain adaptation (SFDA) is compelling because it allows adapting
an off-the-shelf model to a new domain using only unlabelled data. In this
work, we apply existing SFDA techniques to a challenging set of
naturally-occurring distribution shifts in bioacoustics, which are very
different from the ones commonly studied in computer vision. We find existing
methods perform differently relative to each other than observed in vision
benchmarks, and sometimes perform worse than no adaptation at all. We propose a
new simple method which outperforms the existing methods on our new shifts
while exhibiting strong performance on a range of vision datasets. Our findings
suggest that existing SFDA methods are not as generalizable as previously
thought and that considering diverse modalities can be a useful avenue for
designing more robust models.
- Abstract(参考訳): ソースフリードメイン適応(SFDA)は、非ラベルデータのみを使用して、オフザシェルフモデルを新しいドメインに適応できるため、魅力的である。
本研究は,既存のsfda手法を,コンピュータビジョンで一般的に研究されているものとは大きく異なる生体音響学における自然に発生する分布シフトの集合に適用するものである。
既存の手法は、視力ベンチマークで観察されたものと異なる相対性を示し、時には適応が全くないよりも悪い場合もあります。
提案手法は,様々な視覚データセットにおいて強力な性能を発揮しつつ,既存の手法を新しいシフトで上回る新しい簡易な手法を提案する。
以上の結果から,既存のSFDA法は従来考えられていたほど一般化不可能であり,多様なモダリティを考慮すれば,より堅牢なモデルの設計に有用であることが示唆された。
関連論文リスト
- Unveiling the Superior Paradigm: A Comparative Study of Source-Free Domain Adaptation and Unsupervised Domain Adaptation [52.36436121884317]
Source-Free Domain Adaptation (SFDA) は、現実のシナリオにおいて、Unsupervised Domain Adaptation (UDA) よりも一般的に優れていることを示す。
SFDAは、時間効率、ストレージ要件、対象とする学習目標、負の移動リスクの低減、過度な適合に対する堅牢性の向上といった利点を提供している。
利用可能なソースデータをマルチSFDA手法に効果的に統合する新しい重み推定法を提案する。
論文 参考訳(メタデータ) (2024-11-24T13:49:29Z) - DATTA: Towards Diversity Adaptive Test-Time Adaptation in Dynamic Wild World [6.816521410643928]
本稿では,QoE(Quality of Experience)の改善を目的としたDATTA(Diversity Adaptive Test-Time Adaptation)という手法を提案する。
バッチの多様性を評価するダイバーシティ識別(DD)、DDの洞察に基づく正規化手法を調整するためのダイバーシティ適応バッチ正規化(DABN)、モデルを選択的に微調整するダイバーシティ適応細調整(DAFT)の3つの主要なコンポーネントが特徴である。
実験結果から,本手法の精度は最先端手法と比較して最大21%向上することがわかった。
論文 参考訳(メタデータ) (2024-08-15T09:50:11Z) - AR-TTA: A Simple Method for Real-World Continual Test-Time Adaptation [1.4530711901349282]
本稿では,自律運転のためのデータセット,すなわちCLAD-CとShiFTを用いたテスト時間適応手法の検証を提案する。
現在のテスト時間適応手法は、ドメインシフトの様々な程度を効果的に扱うのに苦労している。
モデル安定性を高めるために、小さなメモリバッファを組み込むことで、確立された自己学習フレームワークを強化する。
論文 参考訳(メタデータ) (2023-09-18T19:34:23Z) - Consistency Regularization for Generalizable Source-free Domain
Adaptation [62.654883736925456]
ソースフリードメイン適応(source-free domain adapt, SFDA)は、ソースデータセットにアクセスすることなく、十分にトレーニングされたソースモデルを未学習のターゲットドメインに適応することを目的としている。
既存のSFDAメソッドは、ターゲットのトレーニングセット上で適用されたモデルを評価し、目に見えないが同一の分散テストセットからデータを無視する。
より一般化可能なSFDA法を開発するための整合正則化フレームワークを提案する。
論文 参考訳(メタデータ) (2023-08-03T07:45:53Z) - ViDA: Homeostatic Visual Domain Adapter for Continual Test Time Adaptation [48.039156140237615]
目標ドメインの継続的な変更に事前訓練されたモデルを適用するために、連続的なテスト時間適応タスクを提案する。
我々はCTTA用のVisual Domain Adapter (ViDA) を設計し、ドメイン固有知識とドメイン共有知識の両方を明示的に扱う。
提案手法は,CTTAタスクの分類とセグメント化の両方において,最先端の性能を実現する。
論文 参考訳(メタデータ) (2023-06-07T11:18:53Z) - Source-free Domain Adaptation Requires Penalized Diversity [60.04618512479438]
ソースデータがない場合、異なるドメイン間の知識伝達に対処するために、ソースフリードメイン適応(SFDA)が導入された。
教師なしのFDAでは、多様性はソース上の1つの仮説を学習するか、共有された特徴抽出器で複数の仮説を学習することに限定される。
本稿では,異なる特徴抽出器を用いて表現多様性を促進する新しい無教師付きSFDAアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-04-06T00:20:19Z) - A Review of Single-Source Deep Unsupervised Visual Domain Adaptation [81.07994783143533]
大規模ラベル付きトレーニングデータセットにより、ディープニューラルネットワークは、幅広いベンチマークビジョンタスクを拡張できるようになった。
多くのアプリケーションにおいて、大量のラベル付きデータを取得するのは非常に高価で時間を要する。
限られたラベル付きトレーニングデータに対処するため、大規模ラベル付きソースドメインでトレーニングされたモデルを、疎ラベルまたは未ラベルのターゲットドメインに直接適用しようと試みている人も多い。
論文 参考訳(メタデータ) (2020-09-01T00:06:50Z) - Universal Source-Free Domain Adaptation [57.37520645827318]
ドメイン適応のための新しい2段階学習プロセスを提案する。
Procurementの段階では、今後のカテゴリギャップやドメインシフトに関する事前知識を前提とせず、将来的なソースフリーデプロイメントのためのモデルの提供を目標としています。
Deploymentの段階では、幅広いカテゴリギャップをまたいで動作可能な統一適応アルゴリズムを設計することを目的としている。
論文 参考訳(メタデータ) (2020-04-09T07:26:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。