論文の概要: Dataset Distillation with Convexified Implicit Gradients
- arxiv url: http://arxiv.org/abs/2302.06755v2
- Date: Thu, 9 Nov 2023 22:26:32 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-13 18:28:01.919961
- Title: Dataset Distillation with Convexified Implicit Gradients
- Title(参考訳): 対流型暗黙的勾配を用いたデータセット蒸留
- Authors: Noel Loo, Ramin Hasani, Mathias Lechner, Daniela Rus
- Abstract要約: メタ段階更新の計算に暗黙の勾配を効果的に利用できるかを示す。
さらに,凍結した有限幅ニューラルネットワーク上での学習に対応する凸近似をアルゴリズムに装備する。
- 参考スコア(独自算出の注目度): 69.16247946639233
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: We propose a new dataset distillation algorithm using reparameterization and
convexification of implicit gradients (RCIG), that substantially improves the
state-of-the-art. To this end, we first formulate dataset distillation as a
bi-level optimization problem. Then, we show how implicit gradients can be
effectively used to compute meta-gradient updates. We further equip the
algorithm with a convexified approximation that corresponds to learning on top
of a frozen finite-width neural tangent kernel. Finally, we improve bias in
implicit gradients by parameterizing the neural network to enable analytical
computation of final-layer parameters given the body parameters. RCIG
establishes the new state-of-the-art on a diverse series of dataset
distillation tasks. Notably, with one image per class, on resized ImageNet,
RCIG sees on average a 108\% improvement over the previous state-of-the-art
distillation algorithm. Similarly, we observed a 66\% gain over SOTA on
Tiny-ImageNet and 37\% on CIFAR-100.
- Abstract(参考訳): 本稿では,暗黙的勾配(RCIG)の再パラメータ化と凸化を用いた新しいデータセット蒸留アルゴリズムを提案する。
この目的のために,まずデータセット蒸留を二段階最適化問題として定式化する。
次に,メタグレード更新の計算に暗黙の勾配を効果的に用いる方法を示す。
さらに,凍結した有限幅神経接核上での学習に対応する凸近似をアルゴリズムに適用する。
最後に,ニューラルネットワークをパラメータ化することで,ボディーパラメータが与えられた最終層パラメータの解析計算を可能にすることで,暗黙の勾配におけるバイアスを改善する。
RCIGは、さまざまなデータセット蒸留タスクに新たな最先端技術を確立する。
特に、再サイズされたImageNetでは、クラスごとのイメージが1つあるため、RCIGは従来の最先端蒸留アルゴリズムよりも平均108\%改善している。
同様に,Tiny-ImageNetでは66 %,CIFAR-100では37 %であった。
関連論文リスト
- Modified Step Size for Enhanced Stochastic Gradient Descent: Convergence
and Experiments [0.0]
本稿では,$frac1sqrtttをベースとした変形ステップサイズを改良することにより,勾配降下法(SGD)アルゴリズムの性能向上に新たなアプローチを提案する。
提案されたステップサイズは対数的なステップ項を統合し、最終イテレーションでより小さな値を選択する。
提案手法の有効性について,FashionMNISTとARARを用いて画像分類タスクの数値実験を行った。
論文 参考訳(メタデータ) (2023-09-03T19:21:59Z) - Generalizing Dataset Distillation via Deep Generative Prior [75.9031209877651]
本稿では,データセット全体の知識をいくつかの合成画像に抽出することを提案する。
このアイデアは、学習アルゴリズムにトレーニングデータとして与えられる少数の合成データポイントを合成し、結果として元のデータに基づいてトレーニングされたデータを近似するモデルを構築する。
生成モデルの潜在空間における複数の中間特徴ベクトルに多数の画像を蒸留する新しい最適化アルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-05-02T17:59:31Z) - Minimizing the Accumulated Trajectory Error to Improve Dataset
Distillation [151.70234052015948]
本稿では,フラットな軌道を求める最適化アルゴリズムを提案する。
合成データに基づいてトレーニングされた重みは、平坦な軌道への正規化を伴う累積誤差摂動に対して頑健であることを示す。
本手法はFTD (Flat Trajectory Distillation) と呼ばれ, 勾配整合法の性能を最大4.7%向上させる。
論文 参考訳(メタデータ) (2022-11-20T15:49:11Z) - Efficient Dataset Distillation Using Random Feature Approximation [109.07737733329019]
本稿では,ニューラルネットワークガウス過程(NNGP)カーネルのランダム特徴近似(RFA)を用いた新しいアルゴリズムを提案する。
我々のアルゴリズムは、KIP上で少なくとも100倍のスピードアップを提供し、1つのGPUで実行できる。
RFA蒸留 (RFAD) と呼ばれる本手法は, 大規模データセットの精度において, KIP や他のデータセット凝縮アルゴリズムと競合して動作する。
論文 参考訳(メタデータ) (2022-10-21T15:56:13Z) - Dataset Distillation using Neural Feature Regression [32.53291298089172]
ニューラル・フィーチャー・レグレッション・アンド・プール(FRePo)を用いたデータセット蒸留アルゴリズムを開発した。
FRePoは、メモリ要件を桁違いに少なくし、以前の方法よりも2桁高速なトレーニングで最先端のパフォーマンスを実現している。
我々は,高品質な蒸留データにより,連続学習や会員推測防衛など,下流の様々な応用を大幅に改善できることを示す。
論文 参考訳(メタデータ) (2022-06-01T19:02:06Z) - GradViT: Gradient Inversion of Vision Transformers [83.54779732309653]
我々は,視力変換器(ViT)の勾配に基づく逆攻撃に対する脆弱性を実証する。
自然に見える画像にランダムノイズを最適化するGradViTという手法を提案する。
元の(隠された)データに対する前例のない高い忠実さと近接性を観察する。
論文 参考訳(メタデータ) (2022-03-22T17:06:07Z) - Edge Tracing using Gaussian Process Regression [0.0]
ガウス過程回帰を用いた新しいエッジトレースアルゴリズムを提案する。
我々のアプローチは、画像シーケンスのエッジを効率的に追跡する能力を持っている。
医療画像や衛星画像への様々な応用が、この技術を検証するために用いられている。
論文 参考訳(メタデータ) (2021-11-05T16:43:14Z) - Exploiting Adam-like Optimization Algorithms to Improve the Performance
of Convolutional Neural Networks [82.61182037130405]
勾配降下(SGD)は深いネットワークを訓練するための主要なアプローチです。
本研究では,現在と過去の勾配の違いに基づいて,Adamに基づく変分を比較する。
resnet50を勾配降下訓練したネットワークのアンサンブルと融合実験を行った。
論文 参考訳(メタデータ) (2021-03-26T18:55:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。