論文の概要: Text-Guided Scene Sketch-to-Photo Synthesis
- arxiv url: http://arxiv.org/abs/2302.06883v1
- Date: Tue, 14 Feb 2023 08:13:36 GMT
- ステータス: 処理完了
- システム内更新日: 2023-02-15 16:01:36.412767
- Title: Text-Guided Scene Sketch-to-Photo Synthesis
- Title(参考訳): テキストガイドによるスケッチから写真への合成
- Authors: AprilPyone MaungMaung, Makoto Shing, Kentaro Mitsui, Kei Sawada, Fumio
Okura
- Abstract要約: テキストガイダンスを用いたシーンレベルのスケッチ・ツー・フォト合成手法を提案する。
モデルのトレーニングには,写真の集合から自己教師付き学習を用いる。
実験により,カラー画像から抽出されていないオリジナルスケッチ画像を視覚的品質の高い写真に変換することを確認した。
- 参考スコア(独自算出の注目度): 5.431298869139175
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a method for scene-level sketch-to-photo synthesis with text
guidance. Although object-level sketch-to-photo synthesis has been widely
studied, whole-scene synthesis is still challenging without reference photos
that adequately reflect the target style. To this end, we leverage knowledge
from recent large-scale pre-trained generative models, resulting in text-guided
sketch-to-photo synthesis without the need for reference images. To train our
model, we use self-supervised learning from a set of photographs. Specifically,
we use a pre-trained edge detector that maps both color and sketch images into
a standardized edge domain, which reduces the gap between photograph-based edge
images (during training) and hand-drawn sketch images (during inference). We
implement our method by fine-tuning a latent diffusion model (i.e., Stable
Diffusion) with sketch and text conditions. Experiments show that the proposed
method translates original sketch images that are not extracted from color
images into photos with compelling visual quality.
- Abstract(参考訳): テキストガイドを用いたシーンレベルのスケッチから写真への合成手法を提案する。
オブジェクトレベルのスケッチから写真への合成は広く研究されているが、対象のスタイルを適切に反映する参照写真なしでは、全シーン合成は依然として困難である。
そこで本研究では,最近の大規模事前学習生成モデルの知識を活用し,参照画像の必要なしにテキスト誘導によるスケッチ・ツー・フォト合成を実現する。
モデルのトレーニングには,写真の集合から自己教師付き学習を用いる。
具体的には,カラー画像とスケッチ画像の両方を標準エッジ領域にマッピングする事前学習エッジ検出器を用いて,写真ベースエッジ画像(トレーニング中)と手描きスケッチ画像(推論中)とのギャップを低減する。
スケッチやテキスト条件で遅延拡散モデル(安定拡散)を微調整することで,本手法を実装した。
実験により,カラー画像から抽出されていないオリジナルスケッチ画像を視覚的品質の高い写真に変換することを確認した。
関連論文リスト
- It's All About Your Sketch: Democratising Sketch Control in Diffusion Models [114.73766136068357]
本稿では,拡散モデルにおけるスケッチの可能性を明らかにするとともに,生成型AIにおける直接スケッチ制御の詐欺的可能性に対処する。
私たちはこのプロセスを民主化し、アマチュアのスケッチが正確なイメージを生成できるようにします。
論文 参考訳(メタデータ) (2024-03-12T01:05:25Z) - DiffSketching: Sketch Control Image Synthesis with Diffusion Models [10.172753521953386]
スケッチ・ツー・イメージ合成のためのディープラーニングモデルは、視覚的な詳細なしに歪んだ入力スケッチを克服する必要がある。
我々のモデルは、クロスドメイン制約を通じてスケッチにマッチし、画像合成をより正確に導くために分類器を使用する。
我々のモデルは、生成品質と人的評価の点でGANベースの手法に勝ることができ、大規模なスケッチ画像データセットに依存しない。
論文 参考訳(メタデータ) (2023-05-30T07:59:23Z) - Sketch2Saliency: Learning to Detect Salient Objects from Human Drawings [99.9788496281408]
本研究では,スケッチを弱いラベルとして使用して,画像中の有能な物体を検出する方法について検討する。
これを実現するために,与えられた視覚写真に対応する逐次スケッチ座標を生成することを目的としたフォト・ツー・スケッチ生成モデルを提案する。
テストは、私たちの仮説を証明し、スケッチベースの唾液度検出モデルが、最先端技術と比較して、競争力のあるパフォーマンスを提供する方法を明確にします。
論文 参考訳(メタデータ) (2023-03-20T23:46:46Z) - Picture that Sketch: Photorealistic Image Generation from Abstract
Sketches [109.69076457732632]
この論文は、あなたや私のような訓練を受けていないアマチュアの抽象的で変形した普通のスケッチから、それをフォトリアリスティックなイメージに変えます。
まず、エッジマップのようなスケッチを指示するのではなく、抽象的なフリーハンドな人間のスケッチで作業することを目指しています。
そうすることで、スケッチから写真までのパイプラインを民主化し、スケッチがどれだけよいかに関わらず、スケッチを"写真化"します。
論文 参考訳(メタデータ) (2023-03-20T14:49:03Z) - Unsupervised Scene Sketch to Photo Synthesis [40.044690369936184]
シーンスケッチからリアルな写真を合成する手法を提案する。
我々のフレームワークは、教師なしの方法で手軽に利用できる大規模写真データセットから学習する。
また、本フレームワークは、対応するスケッチのストロークを編集することで、写真合成の制御可能な操作を容易にすることを実証する。
論文 参考訳(メタデータ) (2022-09-06T22:25:06Z) - Adversarial Open Domain Adaption for Sketch-to-Photo Synthesis [42.83974176146334]
自由自在なスケッチから写実的な写真をクラスラベルで合成することを目的とした,オープンドメインのスケッチから写真への翻訳について検討する。
トレーニング監督の欠如とフリーハンドスケッチとフォトドメイン間の大きな幾何学的歪みのため、これは困難である。
スケッチ・ツー・フォト・ツー・スケッチ生成を共同学習するフレームワークを提案する。
論文 参考訳(メタデータ) (2021-04-12T17:58:46Z) - DeepFacePencil: Creating Face Images from Freehand Sketches [77.00929179469559]
既存の画像から画像への変換には、大規模なスケッチと画像のデータセットが必要である。
本稿では,手描きスケッチから写真リアルな顔画像を生成するための効果的なツールであるDeepFacePencilを提案する。
論文 参考訳(メタデータ) (2020-08-31T03:35:21Z) - Cross-Modal Hierarchical Modelling for Fine-Grained Sketch Based Image
Retrieval [147.24102408745247]
我々は、これまで見過ごされてきたスケッチのさらなる特性、すなわち、詳細レベルの階層性について研究する。
本稿では,スケッチ固有の階層を育成し,それを利用して,対応する階層レベルでのスケッチと写真とのマッチングを行う新しいネットワークを設計する。
論文 参考訳(メタデータ) (2020-07-29T20:50:25Z) - Deep Plastic Surgery: Robust and Controllable Image Editing with
Human-Drawn Sketches [133.01690754567252]
スケッチベースの画像編集は、人間の描いたスケッチによって提供される構造情報に基づいて、写真を合成し、修正することを目的としている。
Deep Plastic Surgeryは、手書きのスケッチ入力を使って画像のインタラクティブな編集を可能にする、新しくて堅牢で制御可能な画像編集フレームワークである。
論文 参考訳(メタデータ) (2020-01-09T08:57:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。