PrefixMol: Target- and Chemistry-aware Molecule Design via Prefix
Embedding
- URL: http://arxiv.org/abs/2302.07120v1
- Date: Tue, 14 Feb 2023 15:27:47 GMT
- Title: PrefixMol: Target- and Chemistry-aware Molecule Design via Prefix
Embedding
- Authors: Zhangyang Gao, Yuqi Hu, Cheng Tan, Stan Z. Li
- Abstract summary: We develop a novel generative model that considers both the targeted pocket's circumstances and a variety of chemical properties.
Experiments show that our model exhibits good controllability in both single and multi-conditional molecular generation.
- Score: 34.27649279751879
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Is there a unified model for generating molecules considering different
conditions, such as binding pockets and chemical properties? Although
target-aware generative models have made significant advances in drug design,
they do not consider chemistry conditions and cannot guarantee the desired
chemical properties. Unfortunately, merging the target-aware and chemical-aware
models into a unified model to meet customized requirements may lead to the
problem of negative transfer. Inspired by the success of multi-task learning in
the NLP area, we use prefix embeddings to provide a novel generative model that
considers both the targeted pocket's circumstances and a variety of chemical
properties. All conditional information is represented as learnable features,
which the generative model subsequently employs as a contextual prompt.
Experiments show that our model exhibits good controllability in both single
and multi-conditional molecular generation. The controllability enables us to
outperform previous structure-based drug design methods. More interestingly, we
open up the attention mechanism and reveal coupling relationships between
conditions, providing guidance for multi-conditional molecule generation.
Related papers
- MolMiner: Transformer architecture for fragment-based autoregressive generation of molecular stories [7.366789601705544]
Chemical validity, interpretability of the generation process and flexibility to variable molecular sizes are among some of the remaining challenges for generative models in computational materials design.
We propose an autoregressive approach that decomposes molecular generation into a sequence of discrete and interpretable steps.
Our results show that the model can effectively bias the generation distribution according to the prompted multi-target objective.
arXiv Detail & Related papers (2024-11-10T22:00:55Z) - Conditional Synthesis of 3D Molecules with Time Correction Sampler [58.0834973489875]
Time-Aware Conditional Synthesis (TACS) is a novel approach to conditional generation on diffusion models.
It integrates adaptively controlled plug-and-play "online" guidance into a diffusion model, driving samples toward the desired properties.
arXiv Detail & Related papers (2024-11-01T12:59:25Z) - Aligning Target-Aware Molecule Diffusion Models with Exact Energy Optimization [147.7899503829411]
AliDiff is a novel framework to align pretrained target diffusion models with preferred functional properties.
It can generate molecules with state-of-the-art binding energies with up to -7.07 Avg. Vina Score.
arXiv Detail & Related papers (2024-07-01T06:10:29Z) - Molecule Design by Latent Prompt Transformer [76.2112075557233]
This work explores the challenging problem of molecule design by framing it as a conditional generative modeling task.
We propose a novel generative model comprising three components: (1) a latent vector with a learnable prior distribution; (2) a molecule generation model based on a causal Transformer, which uses the latent vector as a prompt; and (3) a property prediction model that predicts a molecule's target properties and/or constraint values using the latent prompt.
arXiv Detail & Related papers (2024-02-27T03:33:23Z) - LLamol: A Dynamic Multi-Conditional Generative Transformer for De Novo
Molecular Design [0.0]
"LLamol" is a single novel generative transformer model based on the LLama 2 architecture.
We demonstrate that the model adeptly handles single- and multi-conditional organic molecule generation with up to four conditions.
In detail, we showcase the model's capability to utilize token sequences for conditioning, either individually or in combination with numerical properties.
arXiv Detail & Related papers (2023-11-24T10:59:12Z) - Molecule Design by Latent Space Energy-Based Modeling and Gradual
Distribution Shifting [53.44684898432997]
Generation of molecules with desired chemical and biological properties is critical for drug discovery.
We propose a probabilistic generative model to capture the joint distribution of molecules and their properties.
Our method achieves very strong performances on various molecule design tasks.
arXiv Detail & Related papers (2023-06-09T03:04:21Z) - Domain-Agnostic Molecular Generation with Chemical Feedback [44.063584808910896]
MolGen is a pre-trained molecular language model tailored specifically for molecule generation.
It internalizes structural and grammatical insights through the reconstruction of over 100 million molecular SELFIES.
Our chemical feedback paradigm steers the model away from molecular hallucinations, ensuring alignment between the model's estimated probabilities and real-world chemical preferences.
arXiv Detail & Related papers (2023-01-26T17:52:56Z) - Bidirectional Generation of Structure and Properties Through a Single
Molecular Foundation Model [44.60174246341653]
We present a novel multimodal molecular pre-trained model that incorporates the modalities of structure and biochemical properties.
Our proposed model pipeline of data handling and training objectives aligns the structure/property features in a common embedding space.
These contributions emerge synergistic knowledge, allowing us to tackle both multimodal and unimodal downstream tasks through a single model.
arXiv Detail & Related papers (2022-11-19T05:16:08Z) - Retrieval-based Controllable Molecule Generation [63.44583084888342]
We propose a new retrieval-based framework for controllable molecule generation.
We use a small set of molecules to steer the pre-trained generative model towards synthesizing molecules that satisfy the given design criteria.
Our approach is agnostic to the choice of generative models and requires no task-specific fine-tuning.
arXiv Detail & Related papers (2022-08-23T17:01:16Z) - Molecular Attributes Transfer from Non-Parallel Data [57.010952598634944]
We formulate molecular optimization as a style transfer problem and present a novel generative model that could automatically learn internal differences between two groups of non-parallel data.
Experiments on two molecular optimization tasks, toxicity modification and synthesizability improvement, demonstrate that our model significantly outperforms several state-of-the-art methods.
arXiv Detail & Related papers (2021-11-30T06:10:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.