論文の概要: When Mitigating Bias is Unfair: A Comprehensive Study on the Impact of
Bias Mitigation Algorithms
- arxiv url: http://arxiv.org/abs/2302.07185v1
- Date: Tue, 14 Feb 2023 16:53:52 GMT
- ステータス: 処理完了
- システム内更新日: 2023-02-15 14:49:33.390277
- Title: When Mitigating Bias is Unfair: A Comprehensive Study on the Impact of
Bias Mitigation Algorithms
- Title(参考訳): バイアスの緩和が不適切である場合--バイアス除去アルゴリズムの影響に関する総合的研究
- Authors: Natasa Krco, Thibault Laugel, Jean-Michel Loubes, Marcin Detyniecki
- Abstract要約: 偏見緩和アプローチは, 対象者数と対象者数の両方において, 戦略に大きく違いがあることが示される。
これらの結果は、現在のグループフェアネス指標の限界に関する疑問を提起する。
- 参考スコア(独自算出の注目度): 5.606953005101632
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Most works on the fairness of machine learning systems focus on the blind
optimization of common fairness metrics, such as Demographic Parity and
Equalized Odds. In this paper, we conduct a comparative study of several bias
mitigation approaches to investigate their behaviors at a fine grain, the
prediction level. Our objective is to characterize the differences between fair
models obtained with different approaches. With comparable performances in
fairness and accuracy, are the different bias mitigation approaches impacting a
similar number of individuals? Do they mitigate bias in a similar way? Do they
affect the same individuals when debiasing a model? Our findings show that bias
mitigation approaches differ a lot in their strategies, both in the number of
impacted individuals and the populations targeted. More surprisingly, we show
these results even apply for several runs of the same mitigation approach.
These findings raise questions about the limitations of the current group
fairness metrics, as well as the arbitrariness, hence unfairness, of the whole
debiasing process.
- Abstract(参考訳): 機械学習システムの公正性に関するほとんどの研究は、Demographic ParityやEqualized Oddsといった一般的な公正度メトリクスの盲点最適化に焦点を当てている。
本稿では,いくつかのバイアス緩和法を比較検討し,微粒粒化時の挙動,予測値について検討する。
我々の目的は、異なるアプローチで得られた公正なモデルの違いを特徴づけることである。
公平性と正確性において同等のパフォーマンスを持つ場合、異なるバイアス緩和アプローチは、同じような数の個人に影響を与えるか?
バイアスも同じように軽減されますか?
モデルを嫌悪する場合、同じ個人に影響を与えますか?
以上の結果から, バイアス緩和アプローチは, 影響を受ける個体数と対象個体数の両方において, 戦略によって大きく異なることが明らかとなった。
より驚くべきことに、これらの結果は同じ緩和アプローチのいくつかの実行にも適用できる。
これらの知見は、現在のグループフェアネス指標の限界と、偏見の過程全体の偏見性、すなわち不公平性に関する疑問を提起する。
関連論文リスト
- Editable Fairness: Fine-Grained Bias Mitigation in Language Models [52.66450426729818]
個々人の社会的偏見をきめ細かなキャリブレーションを可能にする新しいデバイアス・アプローチであるFairness Stamp(FAST)を提案する。
FASTは最先端のベースラインを超え、デバイアス性能が優れている。
これは、大きな言語モデルにおける公平性を達成するためのきめ細かいデバイアス戦略の可能性を強調している。
論文 参考訳(メタデータ) (2024-08-07T17:14:58Z) - How to be fair? A study of label and selection bias [3.018638214344819]
バイアス付きデータがバイアス付きおよび潜在的に不公平なモデルにつながることは広く受け入れられている。
データにおけるバイアスとモデル予測のためのいくつかの尺度が提案され、バイアス軽減技術が提案されている。
過去10年間に開発された無数の緩和技術にもかかわらず、どの方法が機能するかはいまだに理解されていない。
論文 参考訳(メタデータ) (2024-03-21T10:43:55Z) - Explaining Knock-on Effects of Bias Mitigation [13.46387356280467]
機械学習システムでは、バイアス緩和アプローチは特権と特権のないグループ間で成果をより公平にすることを目的としている。
本稿では,緩和介入を適用した場合のコホートの影響を特徴付けることを目的とする。
モデルライフサイクルの様々な段階で機能するバイアス緩和戦略について検討する。
検討の結果,全ての緩和策が非自明な事例,すなわち緩和努力のみでは望ましくない結果に悪影響を及ぼすことが明らかとなった。
論文 参考訳(メタデータ) (2023-12-01T18:40:37Z) - Evaluating the Fairness of Discriminative Foundation Models in Computer
Vision [51.176061115977774]
本稿では,CLIP (Contrastive Language-Pretraining) などの差別基盤モデルのバイアス評価のための新しい分類法を提案する。
そして、これらのモデルにおけるバイアスを緩和するための既存の手法を分類学に関して体系的に評価する。
具体的には,ゼロショット分類,画像検索,画像キャプションなど,OpenAIのCLIPとOpenCLIPモデルをキーアプリケーションとして評価する。
論文 参考訳(メタデータ) (2023-10-18T10:32:39Z) - Delving into Identify-Emphasize Paradigm for Combating Unknown Bias [52.76758938921129]
同定精度を高めるため,有効バイアス強調スコアリング法(ECS)を提案する。
また, マイニングされたバイアスアライメントとバイアスコンプリケート試料のコントリビューションのバランスをとるために, 勾配アライメント(GA)を提案する。
様々な環境で複数のデータセットで実験を行い、提案されたソリューションが未知のバイアスの影響を軽減することを実証した。
論文 参考訳(メタデータ) (2023-02-22T14:50:24Z) - Fair Enough: Standardizing Evaluation and Model Selection for Fairness
Research in NLP [64.45845091719002]
現代のNLPシステムは様々なバイアスを示しており、モデル偏見に関する文献が増えている。
本稿では,その現状を解明し,公正学習における意味ある進歩の道筋を立案することを目的とする。
論文 参考訳(メタデータ) (2023-02-11T14:54:00Z) - Systematic Evaluation of Predictive Fairness [60.0947291284978]
バイアス付きデータセットのトレーニングにおけるバイアスの緩和は、重要なオープンな問題である。
複数のタスクにまたがる様々なデバイアス化手法の性能について検討する。
データ条件が相対モデルの性能に強い影響を与えることがわかった。
論文 参考訳(メタデータ) (2022-10-17T05:40:13Z) - Survey on Fairness Notions and Related Tensions [4.257210316104905]
自動化された意思決定システムは、雇用やローンの貸与といった問題において、逐次的な決定を下すのにますます使われています。
しかし、客観的機械学習(ML)アルゴリズムはバイアスを起こしやすいため、不公平な判断を下す。
本稿では、一般的に使われている公正概念を調査し、プライバシと精度で両者間の緊張関係について論じる。
論文 参考訳(メタデータ) (2022-09-16T13:36:05Z) - Cross-model Fairness: Empirical Study of Fairness and Ethics Under Model Multiplicity [10.144058870887061]
1つの予測器が等しく機能するモデルのグループからアドホックに選択された場合、個人は害を受ける可能性があると我々は主張する。
これらの不公平性は実生活で容易に発見でき、技術的手段だけで緩和することは困難である可能性が示唆された。
論文 参考訳(メタデータ) (2022-03-14T14:33:39Z) - Information-Theoretic Bias Reduction via Causal View of Spurious
Correlation [71.9123886505321]
本稿では,スプリアス相関の因果的解釈による情報理論バイアス測定手法を提案する。
本稿では,バイアス正規化損失を含むアルゴリズムバイアスに対する新しいデバイアスフレームワークを提案する。
提案したバイアス測定とデバイアス法は、多様な現実シナリオで検証される。
論文 参考訳(メタデータ) (2022-01-10T01:19:31Z) - One-vs.-One Mitigation of Intersectional Bias: A General Method to
Extend Fairness-Aware Binary Classification [0.48733623015338234]
1-vs.ワン・マイティゲーション(英: One-vs. One Mitigation)は、二項分類のためのフェアネス認識機械学習と、センシティブ属性に関連する各サブグループの比較プロセスである。
本手法は,すべての設定において従来の手法よりも交叉バイアスを緩和する。
論文 参考訳(メタデータ) (2020-10-26T11:35:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。