Neurosymbolic AI for Reasoning over Knowledge Graphs: A Survey
- URL: http://arxiv.org/abs/2302.07200v3
- Date: Thu, 16 May 2024 14:46:08 GMT
- Title: Neurosymbolic AI for Reasoning over Knowledge Graphs: A Survey
- Authors: Lauren Nicole DeLong, Ramon Fernández Mir, Jacques D. Fleuriot,
- Abstract summary: We survey methods that perform neurosymbolic reasoning tasks on knowledge graphs and propose a novel taxonomy by which we can classify them.
Specifically, we propose three major categories: (1) logically-informed embedding approaches, (2) embedding approaches with logical constraints, and (3) rule learning approaches.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Neurosymbolic AI is an increasingly active area of research that combines symbolic reasoning methods with deep learning to leverage their complementary benefits. As knowledge graphs are becoming a popular way to represent heterogeneous and multi-relational data, methods for reasoning on graph structures have attempted to follow this neurosymbolic paradigm. Traditionally, such approaches have utilized either rule-based inference or generated representative numerical embeddings from which patterns could be extracted. However, several recent studies have attempted to bridge this dichotomy to generate models that facilitate interpretability, maintain competitive performance, and integrate expert knowledge. Therefore, we survey methods that perform neurosymbolic reasoning tasks on knowledge graphs and propose a novel taxonomy by which we can classify them. Specifically, we propose three major categories: (1) logically-informed embedding approaches, (2) embedding approaches with logical constraints, and (3) rule learning approaches. Alongside the taxonomy, we provide a tabular overview of the approaches and links to their source code, if available, for more direct comparison. Finally, we discuss the unique characteristics and limitations of these methods, then propose several prospective directions toward which this field of research could evolve.
Related papers
- Improving Neural-based Classification with Logical Background Knowledge [0.0]
We propose a new formalism for supervised multi-label classification with propositional background knowledge.
We introduce a new neurosymbolic technique called semantic conditioning at inference.
We discuss its theoritical and practical advantages over two other popular neurosymbolic techniques.
arXiv Detail & Related papers (2024-02-20T14:01:26Z) - Few-Shot Learning on Graphs: from Meta-learning to Pre-training and
Prompting [56.25730255038747]
This survey endeavors to synthesize recent developments, provide comparative insights, and identify future directions.
We systematically categorize existing studies into three major families: meta-learning approaches, pre-training approaches, and hybrid approaches.
We analyze the relationships among these methods and compare their strengths and limitations.
arXiv Detail & Related papers (2024-02-02T14:32:42Z) - A Novel Neural-symbolic System under Statistical Relational Learning [50.747658038910565]
We propose a general bi-level probabilistic graphical reasoning framework called GBPGR.
In GBPGR, the results of symbolic reasoning are utilized to refine and correct the predictions made by the deep learning models.
Our approach achieves high performance and exhibits effective generalization in both transductive and inductive tasks.
arXiv Detail & Related papers (2023-09-16T09:15:37Z) - ReOnto: A Neuro-Symbolic Approach for Biomedical Relation Extraction [3.263873198567265]
ReOnto Relation Extraction (RE) is the task of extracting semantic relationships between entities in a sentence and aligning them to relations defined in a vocabulary.
We present a novel technique that makes use of neuro symbolic knowledge for the RE task.
Experimental results on two public biomedical datasets, BioRel and ADE, show that our method outperforms all the baselines.
arXiv Detail & Related papers (2023-09-04T05:36:58Z) - State of the Art and Potentialities of Graph-level Learning [54.68482109186052]
Graph-level learning has been applied to many tasks including comparison, regression, classification, and more.
Traditional approaches to learning a set of graphs rely on hand-crafted features, such as substructures.
Deep learning has helped graph-level learning adapt to the growing scale of graphs by extracting features automatically and encoding graphs into low-dimensional representations.
arXiv Detail & Related papers (2023-01-14T09:15:49Z) - Self-Supervised Graph Representation Learning for Neuronal Morphologies [75.38832711445421]
We present GraphDINO, a data-driven approach to learn low-dimensional representations of 3D neuronal morphologies from unlabeled datasets.
We show, in two different species and across multiple brain areas, that this method yields morphological cell type clusterings on par with manual feature-based classification by experts.
Our method could potentially enable data-driven discovery of novel morphological features and cell types in large-scale datasets.
arXiv Detail & Related papers (2021-12-23T12:17:47Z) - Integrating Logical Rules Into Neural Multi-Hop Reasoning for Drug
Repurposing [23.783111050856245]
We propose a novel method that combines these rules with a neural multi-hop reasoning approach that uses reinforcement learning.
We apply our method to the biomedical knowledge graph Hetionet and show that our approach outperforms several baseline methods.
arXiv Detail & Related papers (2020-07-10T10:32:08Z) - Neural-Symbolic Relational Reasoning on Graph Models: Effective Link
Inference and Computation from Knowledge Bases [0.5669790037378094]
We propose a neural-symbolic graph which applies learning over all the paths by feeding the model with the embedding of the minimal network of the knowledge graph containing such paths.
By learning to produce representations for entities and facts corresponding to word embeddings, we show how the model can be trained end-to-end to decode these representations and infer relations between entities in a relational approach.
arXiv Detail & Related papers (2020-05-05T22:46:39Z) - A Heterogeneous Graph with Factual, Temporal and Logical Knowledge for
Question Answering Over Dynamic Contexts [81.4757750425247]
We study question answering over a dynamic textual environment.
We develop a graph neural network over the constructed graph, and train the model in an end-to-end manner.
arXiv Detail & Related papers (2020-04-25T04:53:54Z) - Neuro-symbolic Architectures for Context Understanding [59.899606495602406]
We propose the use of hybrid AI methodology as a framework for combining the strengths of data-driven and knowledge-driven approaches.
Specifically, we inherit the concept of neuro-symbolism as a way of using knowledge-bases to guide the learning progress of deep neural networks.
arXiv Detail & Related papers (2020-03-09T15:04:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.